Asymptotic Behavior of Ground State Solutions of Some Combined Nonlinear Problems

被引:6
作者
Chemmam, Rym [1 ]
机构
[1] Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
关键词
Green function; asymptotic behavior; Dirichlet problem; subsolution; supersolution; BOUNDARY; EXISTENCE; EQUATIONS;
D O I
10.1007/s00009-013-0247-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider in this paper the existence and the asymptotic behavior of positive ground state solutions of the boundary value problem -Delta u = a(1)(x)u(alpha 1) + a(2)(x)u(alpha 2) in R-n, lim(|x|->infinity) u(x) = 0, where alpha(1), alpha(2) < 1 and alpha(1), alpha(2) are nonnegative functions in C-loc(gamma) (R-n), 0 < gamma < 1, satisfying some appropriate assumptions related to Karamata regular variation theory.
引用
收藏
页码:1259 / 1272
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[2]  
[Anonymous], 2000, Lecture Notes in Math.
[3]  
[Anonymous], SPRIGER MONOGRAPHS M
[4]  
[Anonymous], 1978, BROWNIAN MOTION CLAS
[5]   Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems [J].
Ben Othman, Sonia ;
Maagli, Habib ;
Masmoudi, Syrine ;
Zribi, Malek .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4137-4150
[6]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[7]  
Chemmam R, 2011, ELECTRON J DIFFER EQ
[8]   Extremal singular solutions for degenerate logistic-type equations in anisotropic media [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) :119-124
[9]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[10]   ENTIRE SOLUTIONS OF SINGULAR ELLIPTIC-EQUATIONS [J].
EDELSON, AL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (02) :523-532