A fractional-order model on new experiments of linear viscoelastic creep of Hami Melon

被引:64
|
作者
Xu, Zheng [1 ,2 ]
Chen, Wen [1 ]
机构
[1] Hohai Univ, Inst Soft Matter Mech, Dept Engn Mech, Nanjing 210098, Jiangsu, Peoples R China
[2] Shihezi Univ, Coll Water Conservancy & Architectural Engn, Shihezi 832003, Xinjiang, Peoples R China
关键词
Hami Melon; Experiment; Viscoelasticity; Fractional derivative; Creep; STRESS-RELAXATION; CALCULUS; BEHAVIOR;
D O I
10.1016/j.camwa.2013.01.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes our experimental testing of linear viscoelastic creep behaviours in Hami Melon. Experimental data shows that Hami Melon has complex viscoelastic property which cannot be well described by the standard model. Consequently, this study develops a fractional derivative model to describe such complex viscoelastic creep behaviours of Hami Melon. The analytical creep function of the proposed fractional linear viscoelastic models is derived via the Boltzmann superposition principle and discrete inverse Laplace transform. And then, such analytical solutions are used to fit the experimental viscoelastic data of Hami Melon. Our study shows that the present fractional linear viscoelastic model with merely three parameters is more efficient and accurate than the generalised Kelvin viscoelastic model of six parameters to describe the stress strain constitutive relations of Hami Melon. It is noted that the present fractional model with adjustable parameters can also be used to describe creep damage. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:677 / 681
页数:5
相关论文
共 50 条
  • [41] On the Stability of Linear Fractional-Order Singular Systems
    Nosrati, Komeil
    Shafiee, Masoud
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 956 - 961
  • [42] Game problems for fractional-order linear systems
    Chikrii, A. A.
    Matichin, I. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 268 : 54 - 70
  • [43] Learnability of Linear Fractional-Order ILC Systems
    Gu, Panpan
    Chen, YangQuan
    Tian, Senping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (03) : 963 - 967
  • [44] Game problems for fractional-order linear systems
    Chikrii, A. A.
    Matichin, I. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (03): : 262 - 278
  • [45] Synchronization of fractional-order linear complex networks
    Wang, Junwei
    Zeng, Caibin
    ISA TRANSACTIONS, 2015, 55 : 129 - 134
  • [46] Application of fractional-order control for vibration suppression of viscoelastic beams
    Bahraini, Seyed Masoud Sotoodeh
    Eghtesad, Mohammad
    Farid, Mehrdad
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2014, 3 (01)
  • [47] Fractional-Order Gas Film Model
    Tang, Xu
    Luo, Ying
    Han, Bin
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [48] A Novel Fractional-Order RothC Model
    Bohaienko, Vsevolod
    Diele, Fasma
    Marangi, Carmela
    Tamborrino, Cristiano
    Aleksandrowicz, Sebastian
    Wozniak, Edyta
    MATHEMATICS, 2023, 11 (07)
  • [49] A Fractional-Order Dynamic PV Model
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Elwakil, Ahmed
    Psychalinos, Costas
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 607 - 610
  • [50] A fractional-order infectivity SIR model
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 452 : 86 - 93