Quantum mechanics as a measurement theory on biconformal space

被引:10
作者
Anderson, LB [1 ]
Wheeler, JT [1 ]
机构
[1] Utah State Univ, Dept Phys, Logan, UT 84322 USA
关键词
quantum mechanics; gauge theory; conformal; measurement;
D O I
10.1142/S0219887806001168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Biconformal spaces contain the essential elements of quantum mechanics, making the independent imposition of quantization unnecessary. Based on three postulates characterizing motion and measurement in biconformal geometry, we derive standard quantum mechanics, and show how the need for probability amplitudes arises from the use of a standard of measurement. Additionally, we show that a postulate for unique, classical motion yields Hamiltonian dynamics with no measurable size changes, while a postulate for probabilistic evolution leads to physical dilatations manifested as measurable phase changes. Our results lead to the Feynman path integral formulation, from which follows the Schrodinger equation. We discuss the Heisenberg uncertainty relation and fundamental canonical commutation relations.
引用
收藏
页码:315 / 340
页数:26
相关论文
共 16 条
[1]   Biconformal supergravity and the AdS/CFT conjecture [J].
Anderson, LB ;
Wheeler, JT .
NUCLEAR PHYSICS B, 2004, 686 (1-2) :285-309
[2]  
Bell JS., 1964, PHYS PHYS FIZIKA, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[3]  
Berezin F. A., 1975, IZV AKAD NAUK SSSR M, V39, p[363, 472]
[4]   CONFORMAL SUPERGRAVITY IN 10 DIMENSIONS [J].
BERGSHOEFF, E ;
DEROO, M ;
DEWIT, B .
NUCLEAR PHYSICS B, 1983, 217 (02) :489-530
[5]   CLIFFORD-ALGEBRA - NOTES ON THE SPINOR METRIC AND LORENTZ, POINCARE, AND CONFORMAL GROUPS [J].
CRAWFORD, JP .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (03) :576-583
[6]  
Einstein A., 1918, SITZ BER PREUSS AKAD, V26, P478
[7]   GAUGE FORMULATION OF GRAVITATION THEORIES .1. THE POINCARE, DE-SITTER, AND CONFORMAL CASES [J].
IVANOV, EA ;
NIEDERLE, J .
PHYSICAL REVIEW D, 1982, 25 (04) :976-987
[8]   GAUGE FORMULATION OF GRAVITATION THEORIES .2. THE SPECIAL CONFORMAL CASE [J].
IVANOV, EA ;
NIEDERLE, J .
PHYSICAL REVIEW D, 1982, 25 (04) :988-994
[9]  
London F., 1927, Z PHYS, V42, P375
[10]   QUANTUM MEASUREMENT AND GEOMETRY [J].
WHEELER, JT .
PHYSICAL REVIEW D, 1990, 41 (02) :431-441