This paper considers the problem of direction of arrival (DOA) and polarization parameters estimation in the case of multiple polarized sources impinging on a vector-sensor array. The quaternion model is used, and a data covariance model is proposed using quaternion formalism. A comparison between long vector orthogonality and quaternion vector orthogonality is also performed, and its implications for signal subspace estimation are discussed. Consequently, a MUSIC-like algorithm is presented, allowing estimation of wave's DOAs and polarization parameters. The algorithm is tested in numerical simulations, and performance analysis is conducted. When compared with other MUSIC-like algorithms for vector-sensor array, the newly proposed algorithm results in a reduction by half of memory requirements for representation of data covariance model and reduces the computational effort, for equivalent performance. This paper also illustrates a compact and elegant way of dealing with multicomponent complex-valued data.