Existence of densities for stable-like driven SDE's with Holder continuous coefficients

被引:37
作者
Debussche, Arnaud [1 ,2 ]
Fournier, Nicolas [3 ]
机构
[1] IRMAR, F-35170 Bruz, France
[2] ENS Cachan Bretagne, F-35170 Bruz, France
[3] Univ Paris Est, LAMA UMR 8050, Fac Sci & Technol, F-94010 Creteil, France
关键词
Levy processes; Stable processes; Stochastic differential equations with jumps; Absolute continuity; Besov spaces;
D O I
10.1016/j.jfa.2013.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a multidimensional stochastic differential equation driven by a stable-like Levy process. We prove that the law of the solution immediately has a density in some Besov space, under some non-degeneracy condition on the driving Levy process and some very light Holder-continuity assumptions on the drift and diffusion coefficients. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1757 / 1778
页数:22
相关论文
共 15 条
[1]  
[Anonymous], 1999, CAMBRIDGE STUD ADV M
[2]  
[Anonymous], 1992, MONOGR MATH
[3]   Integration by parts formula and applications to equations with jumps [J].
Bally, Vlad ;
Clement, Emmanuelle .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (3-4) :613-657
[4]   Holder continuity of solutions of second-order non-linear elliptic integro-differential equations [J].
Barles, Guy ;
Chasseigne, Emmanuel ;
Imbert, Cyril .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) :1-26
[5]  
BICHTELER K, 1983, LECT NOTES MATH, V986, P132
[6]  
Bichteler K., 1987, STOCHASTICS MONOGR, V2
[7]  
Debussche A., PROBAB THEO IN PRESS
[8]   A criterion of density for solutions of Poisson-driven SDEs [J].
Denis, L .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 118 (03) :406-426
[9]  
Fournier N., ARXIV12030130
[10]   Absolute continuity for some one-dimensional processes [J].
Fournier, Nicolas ;
Printems, Jacques .
BERNOULLI, 2010, 16 (02) :343-360