Solution of a tridiagonal operator equation

被引:8
作者
Balasubramanian, R
Kulkarni, SH
Radha, R
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
关键词
diagonal dominance; determinant; gerschgorin disc; tridiagonal matrix; tridiagonal operator;
D O I
10.1016/j.laa.2005.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be it separable Hilbert space with an orthonormal basis {e(n)/n is an element of N} T be a bounded tridiagonal operator on H and T-n be its truncation on span ({e(1), e(2),.... e(n)}). We study the operator equation Tx = y through its finite dimensional truncations T(n)x(n) = y(n.) It is shown that if {parallel to T(n)(-1)e(n)parallel to} and {parallel to T-n*(-1) e(n)parallel to} are bounded, then T is invertible and the solution of Tx = y can be obtained as a limit in the norm topology of the solutions of its finite dimensional truncations. This leads to uniform boundedness of the sequence {T-n(-1)}. We also give sufficient conditions For the boundedness of {parallel to T-n(-1) e(n)parallel to} and {parallel to T-n*(-1)e(n)parallel to} in terms of the entries of the matrix of T. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:389 / 405
页数:17
相关论文
共 9 条
[1]   C-ASTERISK-ALGEBRAS AND NUMERICAL LINEAR ALGEBRA [J].
ARVESON, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :333-360
[2]  
Arveson W., 1994, CONT MATH, V167, P115
[3]  
Axelsson O., 1984, Finite Element Solution of Boundary Value Problems: Theory and Computation
[4]   Non-invertibility of certain almost Mathieu operators [J].
Balasubramanian, R ;
Kulkarni, SH ;
Radha, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (07) :2017-2018
[5]  
BALASUBRAMANIAN R, 2003, P INT WORKSH LIN ALG, P57
[6]  
Bottcher A., 1998, Introduction to Large Truncated Toeplitz Matrices
[7]  
HAMMERLIN G, 1991, NUMERICAL MATH READI
[8]  
SERRACAPIZZANO S, 1999, LINEAR ALGEBRA APPL, V293, P85
[9]  
STRIKEWERDA JC, 1989, DIFFERENCE SCHEMES P