Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries

被引:827
|
作者
Gu, Meng [1 ]
Belharouak, Ilias [4 ]
Zheng, Jianming [3 ]
Wu, Huiming [4 ]
Xiao, Jie [3 ]
Genc, Arda [5 ]
Amine, Khalil [4 ]
Thevuthasan, Suntharampillai [1 ]
Baer, Donald R. [1 ]
Zhang, Ji-Guang [3 ]
Browning, Nigel D. [2 ]
Liu, Jun [2 ]
Wang, Chongmin [1 ]
机构
[1] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[2] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA
[3] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[4] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[5] FEI Co, Hillsboro, OR 97124 USA
关键词
lithium ion battery; layered structure; spinel formation; phase transformation; ELECTROCHEMICAL PERFORMANCE; ANOMALOUS CAPACITY; OXYGEN LOSS; LITHIUM; ELECTRODE; STABILITY; OXIDES;
D O I
10.1021/nn305065u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pristine Li-rich layered cathodes, such as Li1.2Ni0.2Mn0.6O2 and Li1.2Ni0.1Mn0.525- Co0.175O2, were identified to exist in two different structures: LiMO2 R (3) over barm and LI2MO3 C2/m phases. Upon 300 cycles of charge/discharge, both phases gradually transform to the spinel structure. The transition from LiMO2 R (3) over barm to spinel is accomplished through the migration of transition metal ions to the Li site without breaking down the lattice, leading to the formation of mosaic structured spinel grains within the parent particle. In contrast, transition from Li2MO3 C2/m to spinel involves removal of Li+ and O2-, which produces large lattice strain and leads to the breakdown of the parent lattice. The newly formed spinel grains show random orientation within the same particle. Cracks and pores were also noticed within some layered nanoparticles after cycling, which is believed to be the consequence of the lattice breakdown and vacancy condensation upon removal of lithium ions. The AlF3-coating can partially relieve the spinel formation In the layered structure during cycling, resulting in a slower capacity decay. However, the AlF3-coating on the layered structure cannot ultimately stop the spinel formation. The observation of structure transition characteristics discussed in this paper provides direct explanation for the observed gradual capacity loss and poor rate performance of the layered composite. It also provides clues about how to improve the materials structure in order to Improve electrochemical performance.
引用
收藏
页码:760 / 767
页数:8
相关论文
共 50 条
  • [41] Environmentally friendly cathode materials for Li-ion batteries
    Banov, B. I.
    Vasilchina, H. C.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2011, 43 (01): : 7 - 16
  • [42] Polyanion compounds as cathode materials for li-ion batteries
    Wu, X.B.
    Wu, X.H.
    Guo, J.H.
    Li, S.D.
    Liu, R.
    Mcdonald, M.J.
    Yang, Y.
    Green Energy and Technology, 2015, 172 : 93 - 134
  • [43] Communication-The Impact of Lattice Stress on the Layered to Spinel Transformation of Li-Ion Battery Cathode Chemistries
    Macaulay, Bud
    Kramer, Denis
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (03)
  • [44] First Principle Calculations of Cathode in Li-Ion Batteries
    Xu Yuhong
    Yin Geping
    Zuo Pengjian
    PROGRESS IN CHEMISTRY, 2008, 20 (11) : 1827 - 1833
  • [45] Progress on studies of the cathode materials for Li-ion batteries
    Liu, J
    Wen, ZY
    Wu, MM
    Fan, ZZ
    Lin, ZX
    JOURNAL OF INORGANIC MATERIALS, 2002, 17 (01) : 1 - 9
  • [46] Comparative Issues of Cathode Materials for Li-Ion Batteries
    Julien, Christian M.
    Mauger, Alain
    Zaghib, Karim
    Groult, Henri
    INORGANICS, 2014, 2 (01) : 132 - 154
  • [47] Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries
    Shiyou Li
    Xiaolan Fu
    Youwei Liang
    Jing Xie
    Yuan Wei
    Li Yang
    Yamin Han
    Wenbo Li
    Xiaoling Cui
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 5376 - 5384
  • [48] Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries
    Li, Shiyou
    Fu, Xiaolan
    Liang, Youwei
    Xie, Jing
    Wei, Yuan
    Yang, Li
    Han, Yamin
    Li, Wenbo
    Cui, Xiaoling
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (07) : 5376 - 5384
  • [49] Composite carbonaceous materials for Li-ion batteries
    Hazra, A
    Basumallick, IN
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2001, 4 (04) : 275 - 278
  • [50] Synthesis and Characterization of Li1-xMgxMn2O4 Spinel Cathode Material for Li-ion Batteries
    姚经文
    吴锋
    材料导报, 2007, (06) : 144 - 145