Lyapunov behavior and dynamical localization for quasi-periodic CMV matrices

被引:1
作者
Guo, Shuzheng [1 ]
Piao, Daxiong [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
关键词
CMV matrix; Anderson localization; Lyapunov behavior; Dynamical localization; Quasi-periodic coefficient; ORTHOGONAL POLYNOMIALS; HOLDER CONTINUITY; EXPONENTS; OPERATORS; POSITIVITY; ZEROS;
D O I
10.1016/j.laa.2020.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove Lyapunov behavior and dynamical localization for analytic quasi-periodic CMV matrices in the regime of positive Lyapunov exponents. The localization results of Wang and Damanik [28] are extended. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:68 / 89
页数:22
相关论文
共 32 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]  
[Anonymous], 2016, ARXIV161002137
[3]  
[Anonymous], 2005, Orthogonal Polynomials on the Unit Circle
[4]  
[Anonymous], 2006, INTRO WAVE SCATTERIN
[5]   Positive Lyapunov exponents for continuous quasiperiodic Schrodinger equations [J].
Bjerklöv, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (02)
[6]   On nonperturbative localization with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M .
ANNALS OF MATHEMATICS, 2000, 152 (03) :835-879
[7]   Positive Lyapunov exponents and a Large Deviation Theorem for continuum Anderson models, briefly [J].
Bucaj, Valmir ;
Damanik, David ;
Fillman, Jake ;
Gerbuz, Vitaly ;
VandenBoom, Tom ;
Wang, Fengpeng ;
Zhang, Zhenghe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (09) :3179-3186
[8]   LOCALIZATION FOR THE ONE-DIMENSIONAL ANDERSON MODEL VIA POSITIVITY AND LARGE DEVIATIONS FOR THE LYAPUNOV EXPONENT [J].
Bucaj, Valmir ;
Damanik, David ;
Fillman, Jake ;
Gerbuz, Vitaly ;
Vandenboom, Tom ;
Wang, Fengpeng ;
Zhang, Zhenghe .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (05) :3619-3667
[9]  
Cantero MJ, 2010, COMMUN PUR APPL MATH, V63, P464
[10]   Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle [J].
Cantero, MJ ;
Moral, L ;
Velázquez, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :29-56