A numerical approach to the generalized nonlinear fractional Fokker-Planck equation

被引:20
|
作者
Zhao, Zhengang [2 ]
Li, Changpin [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Customs Coll, Dept Fundamental Courses, Shanghai 201204, Peoples R China
关键词
Nonlinear fractional Fokker-Planck equation; Riemann-Liouville derivative; Levy flight; Fractional finite element method; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; APPROXIMATION; DERIVATIVES; DYNAMICS;
D O I
10.1016/j.camwa.2012.01.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a fully discrete Galerkin finite element method to solve the generalized nonlinear fractional Fokker-Planck equation, which has a multi-fractional-spatial-operator characteristic that describes the Levy flight. In the time direction, we use the finite difference method, and in the spatial direction we use the fractional finite element method in the framework of the fractional Sobolev spaces. We derive a fully discrete scheme for the considered equation. We prove the existence and uniqueness of the discrete solution and give the error estimates. The numerical examples are also included which support the theoretical analysis. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3075 / 3089
页数:15
相关论文
共 50 条
  • [41] A second-order accurate numerical scheme for a time-fractional Fokker-Planck equation
    Mustapha, Kassem
    Knio, Omar M.
    Le Maitre, Olivier P.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 2115 - 2136
  • [42] Solution of the Fokker-Planck Equation with a Logarithmic Potential
    Dechant, A.
    Lutz, E.
    Barkai, E.
    Kessler, D. A.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (06) : 1524 - 1545
  • [43] Mathematical Analysis of the Hadamard-Type Fractional Fokker-Planck Equation
    Wang, Zhen
    Sun, Luhan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
  • [44] The fractional Fokker-Planck equation: dispersive transport in an external force field
    Metzler, R
    Klafter, J
    JOURNAL OF MOLECULAR LIQUIDS, 2000, 86 (1-3) : 219 - 228
  • [45] Entropy production and nonlinear Fokker-Planck equations
    Casas, G. A.
    Nobre, F. D.
    Curado, E. M. F.
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [46] An extension of the Gegenbauer pseudospectral method for the time fractional Fokker-Planck equation
    Izadkhah, Mohammad Mahdi
    Saberi-Nadjafi, Jafar
    Toutounian, Faezeh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) : 1301 - 1315
  • [47] Derivation of the Fractional Fokker-Planck Equation for Stable Levy with Financial Applications
    Aljethi, Reem Abdullah
    Kilicman, Adem
    MATHEMATICS, 2023, 11 (05)
  • [48] Generalized Stochastic Fokker-Planck Equations
    Chavanis, Pierre-Henri
    ENTROPY, 2015, 17 (05) : 3205 - 3252
  • [49] Fractional Fokker-Planck subdiffusion in alternating force fields
    Heinsalu, E.
    Patriarca, M.
    Goychuk, I.
    Haenggi, P.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [50] Maximum principle for controlled fractional Fokker-Planck equations
    Wang, Qiuxi
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,