A numerical approach to the generalized nonlinear fractional Fokker-Planck equation

被引:20
|
作者
Zhao, Zhengang [2 ]
Li, Changpin [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Customs Coll, Dept Fundamental Courses, Shanghai 201204, Peoples R China
关键词
Nonlinear fractional Fokker-Planck equation; Riemann-Liouville derivative; Levy flight; Fractional finite element method; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; APPROXIMATION; DERIVATIVES; DYNAMICS;
D O I
10.1016/j.camwa.2012.01.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a fully discrete Galerkin finite element method to solve the generalized nonlinear fractional Fokker-Planck equation, which has a multi-fractional-spatial-operator characteristic that describes the Levy flight. In the time direction, we use the finite difference method, and in the spatial direction we use the fractional finite element method in the framework of the fractional Sobolev spaces. We derive a fully discrete scheme for the considered equation. We prove the existence and uniqueness of the discrete solution and give the error estimates. The numerical examples are also included which support the theoretical analysis. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3075 / 3089
页数:15
相关论文
共 50 条
  • [31] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [32] The fractional Fokker-Planck equation on comb-like model
    Zahran, MA
    Abulwafa, EM
    Elwakil, SA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 323 : 237 - 248
  • [33] Quasicontinuum Fokker-Planck equation
    Alexander, Francis J.
    Rosenau, Philip
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [34] On fractional approximations of the Fokker-Planck equation for energetic particle transport
    Tawfik, Ashraf M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (10)
  • [35] Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [36] SUBDYNAMICS OF FINANCIAL DATA FROM FRACTIONAL FOKKER-PLANCK EQUATION
    Janczura, Joanna
    Wylomanska, Agnieszka
    ACTA PHYSICA POLONICA B, 2009, 40 (05): : 1341 - 1351
  • [37] A generalized Fokker-Planck equation for anomalous diffusion in velocity space
    Dubinova, A. A.
    Trigger, S. A.
    PHYSICS LETTERS A, 2012, 376 (24-25) : 1930 - 1936
  • [38] Exact solutions of the fractional time-derivative Fokker-Planck equation: A novel approach
    Abdel-Gawad, Hamdy I.
    Sweilam, Nasser H.
    Al-Mekhlafi, Seham M.
    Baleanu, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 7861 - 7874
  • [39] Interplay between nonlinear Fokker-Planck equation and stochastic differential equation
    Lima, Leonardo S.
    PROBABILISTIC ENGINEERING MECHANICS, 2022, 68
  • [40] APPLICATION OF FRACTIONAL VARIATIONAL ITERATION METHOD FOR SOLVING FRACTIONAL FOKKER-PLANCK EQUATION
    Ibis, Birol
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (7-8): : 971 - 979