A numerical approach to the generalized nonlinear fractional Fokker-Planck equation

被引:20
|
作者
Zhao, Zhengang [2 ]
Li, Changpin [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Customs Coll, Dept Fundamental Courses, Shanghai 201204, Peoples R China
关键词
Nonlinear fractional Fokker-Planck equation; Riemann-Liouville derivative; Levy flight; Fractional finite element method; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; APPROXIMATION; DERIVATIVES; DYNAMICS;
D O I
10.1016/j.camwa.2012.01.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a fully discrete Galerkin finite element method to solve the generalized nonlinear fractional Fokker-Planck equation, which has a multi-fractional-spatial-operator characteristic that describes the Levy flight. In the time direction, we use the finite difference method, and in the spatial direction we use the fractional finite element method in the framework of the fractional Sobolev spaces. We derive a fully discrete scheme for the considered equation. We prove the existence and uniqueness of the discrete solution and give the error estimates. The numerical examples are also included which support the theoretical analysis. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3075 / 3089
页数:15
相关论文
共 50 条
  • [21] A New Numerical Method for Solving Nonlinear Fractional Fokker-Planck Differential Equations
    Guo, BeiBei
    Jiang, Wei
    Zhang, ChiPing
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (05):
  • [22] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273
  • [23] Generalized Fokker-Planck equation: Derivation and exact solutions
    Denisov, S. I.
    Horsthemke, W.
    Haenggi, P.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (04) : 567 - 575
  • [24] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Lv, Longjin
    Qiu, Weiyuan
    Ren, Fuyao
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) : 619 - 628
  • [25] Group analysis and exact solutions of the time fractional Fokker-Planck equation
    Hashemi, M. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 : 141 - 149
  • [26] A fractional Fokker-Planck equation for non-singular kernel operators
    dos Santos, M. A. F.
    Gomez, Ignacio S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [27] NEURAL PARAMETRIC FOKKER-PLANCK EQUATION
    Liu, Shu
    Li, Wuchen
    Zha, Hongyuan
    Zhou, Haomin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) : 1385 - 1449
  • [28] Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation
    da Silva, PC
    da Silva, LR
    Lenzi, EK
    Mendes, RS
    Malacarne, LC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 16 - 21
  • [29] Numerical simulation of the time-fractional Fokker-Planck equation and applications to polymeric fluids
    Beddrich, Jonas
    Sueli, Endre
    Wohlmuth, Barbara
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 497
  • [30] Information Geometric Investigation of Solutions to the Fractional Fokker-Planck Equation
    Anderson, Johan
    MATHEMATICS, 2020, 8 (05)