A numerical approach to the generalized nonlinear fractional Fokker-Planck equation

被引:20
|
作者
Zhao, Zhengang [2 ]
Li, Changpin [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Customs Coll, Dept Fundamental Courses, Shanghai 201204, Peoples R China
关键词
Nonlinear fractional Fokker-Planck equation; Riemann-Liouville derivative; Levy flight; Fractional finite element method; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; APPROXIMATION; DERIVATIVES; DYNAMICS;
D O I
10.1016/j.camwa.2012.01.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a fully discrete Galerkin finite element method to solve the generalized nonlinear fractional Fokker-Planck equation, which has a multi-fractional-spatial-operator characteristic that describes the Levy flight. In the time direction, we use the finite difference method, and in the spatial direction we use the fractional finite element method in the framework of the fractional Sobolev spaces. We derive a fully discrete scheme for the considered equation. We prove the existence and uniqueness of the discrete solution and give the error estimates. The numerical examples are also included which support the theoretical analysis. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3075 / 3089
页数:15
相关论文
共 50 条
  • [1] Exact solutions for a generalized nonlinear fractional Fokker-Planck equation
    Ma, Junhai
    Liu, Yanqin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 515 - 521
  • [2] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [3] Numerical algorithm for the time fractional Fokker-Planck equation
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 1510 - 1522
  • [4] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [5] Large lattice fractional Fokker-Planck equation
    Tarasov, Vasily E.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [6] Nonlinear inhomogeneous Fokker-Planck equation within a generalized Stratonovich prescription
    Arenas, Zochil Gonzalez
    Barci, Daniel G.
    Tsallis, Constantino
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [7] Implicit numerical approximation scheme for the fractional Fokker-Planck equation
    Wu, Chunhong
    Lu, Linzhang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 1945 - 1955
  • [8] A numerical algorithm for the space and time fractional Fokker-Planck equation
    Vanani, S. Karimi
    Aminataei, A.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (08) : 1037 - 1052
  • [9] Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    Pedron, IT
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 245 - 252
  • [10] Parameters of the fractional Fokker-Planck equation
    Denisov, S. I.
    Haenggi, P.
    Kantz, H.
    EPL, 2009, 85 (04)