EXTREMUM PRINCIPLE FOR THE HADAMARD DERIVATIVES AND ITS APPLICATION TO NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

被引:18
|
作者
Kirane, Mokhtar [1 ,2 ]
Torebek, Berikbol T. [3 ,4 ]
机构
[1] Univ La Rochelle, Fac Sci, LaSIE, Pole Sci & Technol, Ave M Crepeau, F-17042 La Rochelle, France
[2] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] Al Farabi Kazakh Natl Univ, Al Farabi Ave 71, Alma Ata 050040, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
关键词
time-fractional diffusion equation; maximum principle; Hadamard derivative; fractional elliptic equation; nonlinear problem; MAXIMUM PRINCIPLE; DIFFUSION-EQUATIONS; GENERALIZED TIME; REGULARITY;
D O I
10.1515/fca-2019-0022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain new estimates of the Hadamard fractional derivatives of a function at its extreme points. The extremum principle is then applied to show that the initial-boundary-value problem for linear and nonlinear time-fractional diffusion equations possesses at most one classical solution and this solution depends continuously on the initial and boundary conditions. The extremum principle for an elliptic equation with a fractional Hadamard derivative is also proved.
引用
收藏
页码:358 / 378
页数:21
相关论文
共 50 条
  • [31] Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications
    Mohammed Al-Refai
    Yuri Luchko
    Fractional Calculus and Applied Analysis, 2014, 17 : 483 - 498
  • [32] Maximum principle for quasi-linear backward stochastic partial differential equations
    Qiu, Jinniao
    Tang, Shanjian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) : 2436 - 2480
  • [33] On a new class of fractional partial differential equations II
    Shieh, Tien-Tsan
    Spector, Daniel E.
    ADVANCES IN CALCULUS OF VARIATIONS, 2018, 11 (03) : 289 - 307
  • [34] Existence of solutions by coincidence degree theory for Hadamard fractional differential equations at resonance
    Bohner, Martin
    Domoshnitsky, Alexander
    Padhi, Seshadev
    Srivastava, Satyam Narayan
    TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (02) : 296 - 306
  • [35] Mathematical Analysis and the Local Discontinuous Galerkin Method for Caputo-Hadamard Fractional Partial Differential Equation
    Li, Changpin
    Li, Zhiqiang
    Wang, Zhen
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
  • [36] Explicit iteration to Hadamard fractional integro-differential equations on infinite domain
    Wang, Guotao
    Pei, Ke
    Baleanu, Dumitru
    Advances in Difference Equations, 2016,
  • [37] Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations
    Zhiwei Yang
    Xiangcheng Zheng
    Hong Wang
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [38] Explicit iteration to Hadamard fractional integro-differential equations on infinite domain
    Guotao Wang
    Ke Pei
    Dumitru Baleanu
    Advances in Difference Equations, 2016
  • [39] Conformable cosine family and nonlinear fractional differential equations
    Benmerrous, Abdelmjid
    Chadli, Lalla Saadia
    Moujahid, Abdelaziz
    Elomari, M'hamed
    Melliani, Said
    FILOMAT, 2024, 38 (09) : 3193 - 3206
  • [40] An efficient numerical approach for fractional diffusion partial differential equations
    Ghanbari, Behzad
    Atangana, Abdon
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2171 - 2180