EXTREMUM PRINCIPLE FOR THE HADAMARD DERIVATIVES AND ITS APPLICATION TO NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

被引:19
作者
Kirane, Mokhtar [1 ,2 ]
Torebek, Berikbol T. [3 ,4 ]
机构
[1] Univ La Rochelle, Fac Sci, LaSIE, Pole Sci & Technol, Ave M Crepeau, F-17042 La Rochelle, France
[2] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] Al Farabi Kazakh Natl Univ, Al Farabi Ave 71, Alma Ata 050040, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
关键词
time-fractional diffusion equation; maximum principle; Hadamard derivative; fractional elliptic equation; nonlinear problem; MAXIMUM PRINCIPLE; DIFFUSION-EQUATIONS; GENERALIZED TIME; REGULARITY;
D O I
10.1515/fca-2019-0022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain new estimates of the Hadamard fractional derivatives of a function at its extreme points. The extremum principle is then applied to show that the initial-boundary-value problem for linear and nonlinear time-fractional diffusion equations possesses at most one classical solution and this solution depends continuously on the initial and boundary conditions. The extremum principle for an elliptic equation with a fractional Hadamard derivative is also proved.
引用
收藏
页码:358 / 378
页数:21
相关论文
共 25 条
[1]   CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES [J].
Abbas, Said ;
Benchohra, Mouffak ;
Hamidi, Naima ;
Henderson, Johnny .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) :1027-1045
[2]  
Al-Refai M., 2018, ELECTRON J DIFFER EQ, V2018, P1
[3]   Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :40-51
[4]   Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :483-498
[5]  
Al-Refai M, 2012, ELECTRON J QUAL THEO, P1
[6]   A Time-Fractional Diffusion Equation with Generalized Memory Kernel in Differential and Difference Settings with Smooth Solutions [J].
Alikhanov, Anatoly A. .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) :647-660
[7]   MAXIMUM PRINCIPLE FOR CERTAIN GENERALIZED TIME AND SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mokhtar .
QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (01) :163-175
[8]  
[Anonymous], N HOLLAND MATH STUDI
[9]   Maximum principle and its application for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions [J].
Borikhanov, Meiirkhan ;
Kirane, Mokhtar ;
Torebek, Berikbol T. .
APPLIED MATHEMATICS LETTERS, 2018, 81 :14-20
[10]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53