Reinforcing nanocolloidal crystals by tuning interparticle bonding via atomic layer deposition

被引:7
|
作者
Zhang, Di [1 ]
Zhang, Lei [2 ]
Lee, Daeyeon [2 ]
Cheng, Xuemei [3 ]
Feng, Gang [1 ]
机构
[1] Villanova Univ, Dept Mech Engn, Villanova, PA 19085 USA
[2] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[3] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA
基金
美国国家科学基金会;
关键词
Nanoindentation; Nanostructured materials; Mechanical properties; Atomic layer deposition; Granular materials; SILICA COLLOIDAL CRYSTALS; THIN-FILMS; NANOINDENTATION HARDNESS; MECHANICAL-PROPERTIES; OPTICAL-PROPERTIES; ELASTIC-MODULUS; LOW-TEMPERATURE; YOUNGS MODULUS; INVERSE OPALS; FORCES;
D O I
10.1016/j.actamat.2015.05.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocolloidal crystals have emerging applications in photonics and optoelectronics, but their poor mechanical robustness is a major hindrance to their widespread application. In this study, we observed that atomic layer deposition could be used to tune the mechanical properties of nanocolloidal crystals and that atomic-layer-deposition-treated nanocolloidal crystals could be drastically stiffened by a factor of 30 and hardened by a factor of 150. Nanocolloidal crystals composed of monodisperse 254 nm and 289 nm SiO2 nanocolloids were characterized using nanoindentation, yielding low hardness and modulus values. The nanocolloidal crystals exhibit granular behavior with intrinsically weak interparticle bonding. The use of atomic layer deposition enabled us to precisely tune the interparticle bonding by depositing a reinforcing layer around all of the nanocolloids. By increasing the atomic-layer-deposition thickness, the deformation mechanism of nanocolloidal crystals transitions from granular to bonded granular and, finally, to particle-reinforced composite behavior. We believe this work presents the first-ever systematic study of such transitions based on both experimental and theoretical approaches. The mechanism-based models agree well with the experimental results, further validating the proposed transition mechanism. Our work comprehensively explains the effect of atomic layer deposition on the relationship between the structural and mechanical properties of nanocolloidal crystals, providing insights into the mechanical reinforcement mechanism of other types of porous materials and nanocolloidal assemblies. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 50 条
  • [41] Atomic layer deposition of ZnS via in situ production of H2S
    Bakke, J. R.
    King, J. S.
    Jung, H. J.
    Sinclair, R.
    Bent, S. F.
    THIN SOLID FILMS, 2010, 518 (19) : 5400 - 5408
  • [42] Tuning the selectivity of Pt-catalyzed tandem hydrogenation of nitro compounds via controllable NiO decoration by atomic layer deposition
    Zhao, Jixiao
    Chen, Chaoqiu
    Zhang, Baiyan
    Jiao, Zhifeng
    Zhang, Jiankang
    Yang, Jie
    Qin, Yong
    CATALYSIS COMMUNICATIONS, 2019, 121 : 48 - 52
  • [43] Rational tuning of SnO2 electron transport layer grown by atomic layer deposition for performance improvement of perovskite solar cells
    Shin, Seungha
    Kim, Yeongchan
    Park, Sungho
    Bae, Young Hwan
    Noh, Jin-Seo
    SOLAR ENERGY, 2024, 277
  • [44] AlN epitaxy on SiC by low-temperature atomic layer deposition via layer-by-layer, in situ atomic layer annealing
    Kao, Wei-Chung
    Lee, Wei-Hao
    Yi, Sheng-Han
    Shen, Tsung-Han
    Lin, Hsin-Chih
    Chen, Miin-Jang
    RSC ADVANCES, 2019, 9 (22): : 12226 - 12231
  • [45] Atomic layer deposition of carbon doped silicon oxide by precursor design and process tuning
    Wang, Meiliang
    Chandra, Haripin
    Lei, Xinjian
    Mallikarjunan, Anupama
    Cuthill, Kirk
    Xiao, Manchao
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02):
  • [46] Tuning the band gap and carrier concentration of titania films grown by spatial atomic layer deposition: a precursor comparison
    Armstrong, Claire
    Delumeau, Louis-Vincent
    Munoz-Rojas, David
    Kursumovic, Ahmed
    MacManus-Driscoll, Judith
    Musselman, Kevin P.
    NANOSCALE ADVANCES, 2021, 3 (20): : 5908 - 5918
  • [47] Tuning of Emission Wavelength of CaS:Eu by Addition of Oxygen Using Atomic Layer Deposition
    Rosa, Jose
    Lahtinen, Jouko
    Julin, Jaakko
    Sun, Zhipei
    Lipsanen, Harri
    MATERIALS, 2021, 14 (20)
  • [48] Atomic layer deposition of iron oxide on a porous carbon substrate via ethylferrocene and an oxygen plasma
    Labbe, Matthew
    Clark, Michael P.
    Abedi, Zahra
    He, Anqiang
    Cadien, Ken
    Ivey, Douglas G.
    SURFACE & COATINGS TECHNOLOGY, 2021, 421
  • [49] Effective coating of titania nanoparticles with alumina via atomic layer deposition
    Azizpour, H.
    Talebi, M.
    Tichelaar, F. D.
    Sotudeh-Gharebagh, R.
    Guo, J.
    van Ommen, J. R.
    Mostoufi, N.
    APPLIED SURFACE SCIENCE, 2017, 426 : 480 - 496
  • [50] Janus Membranes via Diffusion-Controlled Atomic Layer Deposition
    Waldman, Ruben Z.
    Yang, Hao-Cheng
    Mandia, David J.
    Nealey, Paul F.
    Elam, Jeffrey W.
    Darling, Seth B.
    ADVANCED MATERIALS INTERFACES, 2018, 5 (15):