Reinforcing nanocolloidal crystals by tuning interparticle bonding via atomic layer deposition

被引:7
|
作者
Zhang, Di [1 ]
Zhang, Lei [2 ]
Lee, Daeyeon [2 ]
Cheng, Xuemei [3 ]
Feng, Gang [1 ]
机构
[1] Villanova Univ, Dept Mech Engn, Villanova, PA 19085 USA
[2] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[3] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA
基金
美国国家科学基金会;
关键词
Nanoindentation; Nanostructured materials; Mechanical properties; Atomic layer deposition; Granular materials; SILICA COLLOIDAL CRYSTALS; THIN-FILMS; NANOINDENTATION HARDNESS; MECHANICAL-PROPERTIES; OPTICAL-PROPERTIES; ELASTIC-MODULUS; LOW-TEMPERATURE; YOUNGS MODULUS; INVERSE OPALS; FORCES;
D O I
10.1016/j.actamat.2015.05.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocolloidal crystals have emerging applications in photonics and optoelectronics, but their poor mechanical robustness is a major hindrance to their widespread application. In this study, we observed that atomic layer deposition could be used to tune the mechanical properties of nanocolloidal crystals and that atomic-layer-deposition-treated nanocolloidal crystals could be drastically stiffened by a factor of 30 and hardened by a factor of 150. Nanocolloidal crystals composed of monodisperse 254 nm and 289 nm SiO2 nanocolloids were characterized using nanoindentation, yielding low hardness and modulus values. The nanocolloidal crystals exhibit granular behavior with intrinsically weak interparticle bonding. The use of atomic layer deposition enabled us to precisely tune the interparticle bonding by depositing a reinforcing layer around all of the nanocolloids. By increasing the atomic-layer-deposition thickness, the deformation mechanism of nanocolloidal crystals transitions from granular to bonded granular and, finally, to particle-reinforced composite behavior. We believe this work presents the first-ever systematic study of such transitions based on both experimental and theoretical approaches. The mechanism-based models agree well with the experimental results, further validating the proposed transition mechanism. Our work comprehensively explains the effect of atomic layer deposition on the relationship between the structural and mechanical properties of nanocolloidal crystals, providing insights into the mechanical reinforcement mechanism of other types of porous materials and nanocolloidal assemblies. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 50 条
  • [31] Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique
    Li, Fengbin
    Li, Ling
    Liao, Xingzhi
    Wang, Yong
    JOURNAL OF MEMBRANE SCIENCE, 2011, 385 (1-2) : 1 - 9
  • [32] Tuning the crystallization temperature of titanium dioxide thin films by incorporating silicon dioxide via supercycle atomic layer deposition
    Hedrich, Carina
    Deduytsche, Davy
    Petit, Robin R.
    Krekeler, Tobias
    Peng, Jun
    Ritter, Martin
    Dendooven, Jolien
    Detavernier, Christophe
    Blick, Robert H.
    Zierold, Robert
    SURFACES AND INTERFACES, 2025, 57
  • [33] Tuning Acid-Base Properties Using Mg-Al Oxide Atomic Layer Deposition
    Jackson, David H. K.
    O'Neill, Brandon J.
    Lee, Jechan
    Huber, George W.
    Dumesic, James A.
    Kuech, Thomas F.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (30) : 16573 - 16580
  • [34] Fermi Level Tuning of ZnO Films Through Supercycled Atomic Layer Deposition
    Ruomeng Huang
    Sheng Ye
    Kai Sun
    Kian S. Kiang
    C. H. (Kees) de Groot
    Nanoscale Research Letters, 2017, 12
  • [35] Tuning the Pore Size of Ink-Bottle Mesopores by Atomic Layer Deposition
    Dendooven, Jolien
    Goris, Bart
    Devloo-Casier, Kilian
    Levrau, Elisabeth
    Biermans, Ellen
    Baklanov, Mikhail R.
    Ludwig, Karl F.
    Van der Voort, Pascal
    Bals, Sara
    Detavernier, Christophe
    CHEMISTRY OF MATERIALS, 2012, 24 (11) : 1992 - 1994
  • [36] Encapsulating Chemically Doped Graphene via Atomic Layer Deposition
    Black, A.
    Urbanos, F. J.
    Osorio, M. R.
    Miranda, R.
    Vazquez de Parga, A. L.
    Granados, D.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (09) : 8190 - 8196
  • [37] Gyroidal mesoporous multifunctional nanocomposites via atomic layer deposition
    Werner, Joerg G.
    Scherer, Maik R. J.
    Steiner, Ullrich
    Wiesner, Ulrich
    NANOSCALE, 2014, 6 (15) : 8736 - 8742
  • [38] Structure in multilayer films of zinc sulfide and copper sulfide via atomic layer deposition
    Short, Andrew
    Jewell, Leila
    Bielecki, Anthony
    Keiber, Trevor
    Bridges, Frank
    Carter, Sue
    Alers, Glenn
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2014, 32 (01):
  • [39] Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition
    Wang, Tuo
    Luo, Zhibin
    Li, Chengcheng
    Gong, Jinlong
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) : 7469 - 7484
  • [40] Selective Surface Passivation for Ultrathin and Continuous Metallic Films via Atomic Layer Deposition
    Kim, Han
    Kim, Taeseok
    Kim, Minseok
    Jeon, Jihoon
    Park, Gwang Min
    Kim, Sung-Chul
    Won, Sung Ok
    Harada, Ryosuke
    Kim, Sangtae
    Kim, Seong Keun
    NANO LETTERS, 2025, 25 (10) : 4101 - 4107