Generative Adversarial Networks for Crystal Structure Prediction

被引:178
作者
Kim, Sungwon [1 ]
Noh, Juhwan [1 ]
Gu, Geun Ho [1 ]
Aspuru-Guzik, Alan [2 ,3 ,4 ,5 ]
Jung, Yousung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[2] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M55S 3H6, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON M55S 3H6, Canada
[4] Vector Inst Artificial Intelligence, Toronto, ON M5S 1M1, Canada
[5] Canadian Inst Adv Res CIFAR, Toronto, ON M5S 1M1, Canada
关键词
THROUGHPUT; DESIGN; OPTIMIZATION; PHOTOANODES; STABILITY; DISCOVERY; CAPACITY;
D O I
10.1021/acscentsci.0c00426
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The constant demand for novel functional materials calls for efficient strategies to accelerate the materials discovery, and crystal structure prediction is one of the most fundamental tasks along that direction. In addressing this challenge, generative models can offer new opportunities since they allow for the continuous navigation of chemical space via latent spaces. In this work, we employ a crystal representation that is inversion-free based on unit cell and fractional atomic coordinates and build a generative adversarial network for crystal structures. The proposed model is applied to generate the Mg-Mn-O ternary materials with the theoretical evaluation of their photoanode properties for high-throughput virtual screening (HTVS). The proposed generative HTVS framework predicts 23 new crystal structures with reasonable calculated stability and band gap. These findings suggest that the generative model can be an effective way to explore hidden portions of the chemical space, an area that is usually unreachable when conventional substitution-based discovery is employed.
引用
收藏
页码:1412 / 1420
页数:9
相关论文
共 64 条
[1]  
[Anonymous], 2017, IEICE Technical Report, DOI [https://doi.org/10.48550/arXiv.1708.07920, DOI 10.48550/ARXIV.1708.07920]
[2]  
[Anonymous], 2017, Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
[3]   High-throughput computational design of cathode coatings for Li-ion batteries [J].
Aykol, Muratahan ;
Kim, Soo ;
Hegde, Vinay I. ;
Snydacker, David ;
Lu, Zhi ;
Hao, Shiqiang ;
Kirklin, Scott ;
Morgan, Dane ;
Wolverton, C. .
NATURE COMMUNICATIONS, 2016, 7
[4]   High-throughput screening for antiferromagnetic Heusler compounds using density functional theory [J].
Balluff, Jan ;
Diekmann, Kevin ;
Reiss, Guenter ;
Meinert, Markus .
PHYSICAL REVIEW MATERIALS, 2017, 1 (03)
[5]   New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations [J].
Castelli, Ivano E. ;
Huser, Falco ;
Pandey, Mohnish ;
Li, Hong ;
Thygesen, Kristian S. ;
Seger, Brian ;
Jain, Anubhav ;
Persson, Kristin A. ;
Ceder, Gerbrand ;
Jacobsen, Karsten W. .
ADVANCED ENERGY MATERIALS, 2015, 5 (02)
[6]   AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Wang, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Taylor, Richard H. ;
Nelson, Lance J. ;
Hart, Gus L. W. ;
Sanvito, Stefano ;
Buongiorno-Nardelli, Marco ;
Mingo, Natalio ;
Levy, Ohad .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :227-235
[7]   Data-Driven Learning of Total and Local Energies in Elemental Boron [J].
Deringer, Volker L. ;
Pickard, Chris J. ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2018, 120 (15)
[8]   Convolutional Neural Network With Data Augmentation for SAR Target Recognition [J].
Ding, Jun ;
Chen, Bo ;
Liu, Hongwei ;
Huang, Mengyuan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) :364-368
[9]  
Fawzi A, 2016, IEEE IMAGE PROC, P3688, DOI 10.1109/ICIP.2016.7533048
[10]   USPEX - Evolutionary crystal structure prediction [J].
Glass, Colin W. ;
Oganov, Artem R. ;
Hansen, Nikolaus .
COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (11-12) :713-720