Enhanced Phonon Boundary Scattering at High Temperatures in Hierarchically Disordered Nanostructures

被引:20
作者
Chakraborty, Dhritiman [1 ]
Oliveira, Laura de Sousa [1 ]
Neophytou, Neophytos [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
欧洲研究理事会;
关键词
Thermal conductivity; phonon transport; boundary scattering; thermoelectrics; nanotechnology; nanocrystalline silicon; Monte Carlo simulations; HIGH THERMOELECTRIC FIGURE; THERMAL-CONDUCTIVITY; MONTE-CARLO; POLYCRYSTALLINE SILICON; POWER-FACTOR; TRANSPORT;
D O I
10.1007/s11664-019-06959-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Boundary scattering in hierarchically disordered nanomaterials is an effective way to reduce the thermal conductivity of thermoelectric materials and increase their performance. In this work, we investigate thermal transport in silicon-based nanostructured materials in the presence of nanocrystallinity and nanopores at the range of 300-900K using a Monte Carlo simulation approach. The thermal conductivity in the presence of nanocrystallinity follows the same reduction trend as in the pristine material. We show, however, that the relative reduction is stronger with temperature in the presence of nanocrystallinity, a consequence of the wavevector-dependent (q-dependent) nature of phonon scattering on the domain boundaries. In particular, as the temperature is raised, the proportion of large wavevector phonons increases. Since these phonons are more susceptible to boundary scattering, we show that this q-dependent surface scattering could account for as much as a approximate to 40% reduction in the thermal conductivity of nanocrystalline Si. The introduction of nanopores with randomized positions magnifies this effect, which suggests that hierarchical nanostructuring is actually more effective at high temperatures than previously thought.
引用
收藏
页码:1909 / 1916
页数:8
相关论文
共 36 条
[1]   Lattice thermal transport in large-area polycrystalline graphene [J].
Aksamija, Z. ;
Knezevic, I. .
PHYSICAL REVIEW B, 2014, 90 (03)
[2]   Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications [J].
Andres Perez-Taborda, Jaime ;
Munoz Rojo, Miguel ;
Maiz, Jon ;
Neophytou, Neophytos ;
Martin-Gonzalez, Marisol .
SCIENTIFIC REPORTS, 2016, 6
[3]   Near-field radiative transfer based thermal rectification using doped silicon [J].
Basu, Soumyadipta ;
Francoeur, Mathieu .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   Strained endotaxial nanostructures with high thermoelectric figure of merit [J].
Biswas, Kanishka ;
He, Jiaqing ;
Zhang, Qichun ;
Wang, Guoyu ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE CHEMISTRY, 2011, 3 (02) :160-166
[6]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[7]   Thermometry and thermal transport in micro/nanoscale solid-state devices and structures [J].
Cahill, DG ;
Goodson, KE ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02) :223-241
[8]   Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures [J].
Chakraborty, Dhritiman ;
Foster, Samuel ;
Neophytou, Neophytos .
PHYSICAL REVIEW B, 2018, 98 (11)
[9]   Model for thermal conductivity in nanoporous silicon from atomistic simulations [J].
Dettori, Riccardo ;
Melis, Claudio ;
Cartoixa, Xavier ;
Rurali, Riccardo ;
Colombo, Luciano .
PHYSICAL REVIEW B, 2015, 91 (05)
[10]   Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films [J].
Dunham, Marc T. ;
Lorenzi, Bruno ;
Andrews, Sean C. ;
Sood, Aditya ;
Asheghi, Mehdi ;
Narducci, Dario ;
Goodson, Kenneth E. .
APPLIED PHYSICS LETTERS, 2016, 109 (25)