Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data

被引:21
作者
Arcangeli, Remi
Cruz Lopez de Silanes, Maria [2 ,3 ]
Jose Torrens, Juan [1 ]
机构
[1] Univ Publ Navarra, Dept Ingn Matemat & Informat, Pamplona 31006, Spain
[2] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50018, Spain
[3] Univ Zaragoza, IUMA, EINA, Zaragoza 50018, Spain
关键词
INTERPOLATION; SPACES; ERROR;
D O I
10.1007/s00211-011-0439-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, devoted to sampling inequalities, provides some extensions of previous results by Arcang,li et al. (Numer Math 107(2):181-211, 2007; J Approx Theory 161:198-212, 2009). Given a function u in a suitable Sobolev space defined on a domain Omega in , sampling inequalities typically yield bounds of integer order Sobolev semi-norms of u in terms of a higher order Sobolev semi-norm of u, the fill distance d between and a discrete set , and the values of u on A. The extensions established in this paper allow us to bound fractional order semi-norms and to incorporate, if available, values of partial derivatives on the discrete set. Both the cases of a bounded domain Omega and are considered.
引用
收藏
页码:587 / 608
页数:22
相关论文
共 23 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]  
[Anonymous], 2002, TEXTS APPL MATH
[3]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[4]  
[Anonymous], 2005, Cambridge Monograph, Applied Comput. Math.
[5]  
Arcangeli R., 2011, ARXIV11117301V1MATHF
[6]   An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing [J].
Arcangeli, Remi ;
Cruz Lopez de Silanes, Maria ;
Jose Torrens, Juan .
NUMERISCHE MATHEMATIK, 2007, 107 (02) :181-211
[7]   Estimates for functions in Sobolev spaces defined on unbounded domains [J].
Arcangeli, Remi ;
Lopez de Silanes, Maria Cruz ;
Jose Torrens, Juan .
JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) :198-212
[8]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[9]  
Corrigan A., 2009, ARXIV08014097V3MATHN
[10]  
DUCHON J, 1978, RAIRO-ANAL NUMER-NUM, V12, P325