Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition

被引:10
作者
Tedford, Hugo W. [1 ]
Kisilevsky, Alexandra E. [1 ]
Vieira, Lucienne B. [1 ]
Varela, Diego [1 ]
Chen, Lina [1 ]
Zamponi, Gerald W. [1 ]
机构
[1] Univ Calgary, Hotchkiss Brain Inst, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Wild Type Channel; Single Amino Acid Residue; Calcium Channel Subunit; Alpha Helical Structure; Linker Residue;
D O I
10.1186/1756-6606-3-6
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Direct interaction with the beta subunit of the heterotrimeric G protein complex causes voltage-dependent inhibition of N-type calcium channels. To further characterize the molecular determinants of this interaction, we performed scanning mutagenesis of residues 372-387 and 410-428 of the N-type channel alpha(1) subunit, in which individual residues were replaced by either alanine or cysteine. We coexpressed wild type G beta(1 gamma 2) subunits with either wild type or point mutant N-type calcium channels, and voltage-dependent, G protein-mediated inhibition of the channels (VDI) was assessed using patch clamp recordings. The resulting data indicate that Arg(376) and Val(416) of the alpha(1) subunit, residues which are surface-exposed in the presence of the calcium channel beta subunit, contribute significantly to the functional inhibition by G beta(1). To further characterize the roles of Arg(376) and Val(416) in this interaction, we performed secondary mutagenesis of these residues, coexpressing the resulting mutants with wild type G beta(1 gamma 2) subunits and with several isoforms of the auxiliary beta subunit of the N-type channel, again assessing VDI using patch clamp recordings. The results confirm the importance of Arg(376) for G protein-mediated inhibition and show that a single amino acid substitution to phenylalanine drastically alters the abilities of auxiliary calcium channel subunits to regulate G protein inhibition of the channel.
引用
收藏
页数:7
相关论文
共 39 条
[1]   G protein-gated inhibitory module of N-type (CaV2.2) Ca2+ channels [J].
Agler, HL ;
Evans, J ;
Tay, LH ;
Anderson, MJ ;
Colecraft, HM ;
Yue, DT .
NEURON, 2005, 46 (06) :891-904
[2]   Targeting Ca2+ channels to treat pain:: T-type versus N-type [J].
Altier, C ;
Zamponi, GW .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2004, 25 (09) :465-470
[3]   Differential modulation of N-type α1B and P/Q-type α1A calcium channels by different G protein β subunit isoforms [J].
Arnot, MI ;
Stotz, SC ;
Jarvis, SE ;
Zamponi, GW .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 527 (02) :203-212
[5]   PERTUSSIS TOXIN AND VOLTAGE DEPENDENCE DISTINGUISH MULTIPLE PATHWAYS MODULATING CALCIUM CHANNELS OF RAT SYMPATHETIC NEURONS [J].
BEECH, DJ ;
BERNHEIM, L ;
HILLE, B .
NEURON, 1992, 8 (01) :97-106
[6]   INTRACELLULAR CA2+ BUFFERS DISRUPT MUSCARINIC SUPPRESSION OF CA2+ CURRENT AND M-CURRENT IN RAT SYMPATHETIC NEURONS [J].
BEECH, DJ ;
BERNHEIM, L ;
MATHIE, A ;
HILLE, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (02) :652-656
[7]   Identification of residues in the N terminus of α1B critical for inhibition of the voltage-dependent calcium channel by Gβγ [J].
Cantí, C ;
Page, KM ;
Stephens, GJ ;
Dolphin, AC .
JOURNAL OF NEUROSCIENCE, 1999, 19 (16) :6855-6864
[8]   Structure and regulation of voltage-gated Ca2+ channels [J].
Catterall, WA .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :521-555
[9]   MUSCARINIC M-CURRENT INHIBITION VIA G(ALPHA-Q/11) AND ALPHA-ADRENOCEPTOR INHIBITION OF CA2+ CURRENT VIA G(ALPHA-O) IN RAT SYMPATHETIC NEURONS [J].
CAULFIELD, MP ;
JONES, S ;
VALLIS, Y ;
BUCKLEY, NJ ;
KIM, GD ;
MILLIGAN, G ;
BROWN, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 477 (03) :415-422
[10]   Cross-talk between G-protein and protein kinase C modulation of N-type calcium channels is dependent on the G-protein β subunit isoform [J].
Cooper, CB ;
Arnot, MI ;
Feng, ZP ;
Jarvis, SE ;
Hamid, J ;
Zamponi, GW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (52) :40777-40781