Water structure, dynamics and reactivity on a TiO2-nanoparticle surface: new insights from ab initio molecular dynamics

被引:3
|
作者
Grote, Fredrik [1 ]
Lyubartsev, Alexander P. [1 ]
机构
[1] Stockholm Univ, Dept Mat & Environm Chem, Svante Arrhenius Vag 16 C, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
TIO2; NANOPARTICLES; PROTON-TRANSFER; ENERGY;
D O I
10.1039/d2nr02354g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water structure, dynamics and reactivity at the surface of a small TiO2-nanoparticle fully immersed in water was investigated by an ab initio molecular dynamics simulation. Several modes of water binding were identified by assigning each atom to an atom type, representing a distinct chemical environment in the ab initio ensemble, and then computing radial distribution functions between the atom types. Surface reactivity was investigated by monitoring how populations of atom types change during the simulation. In order to acquire further insight, electron densities for a set of representative system snapshots were analyzed using an atoms-in-molecules approach. Our results reveal that water dissociation, where a water molecule splits at a bridging oxygen site to form a hydroxyl group and a protonated oxygen bridge, can occur by a mechanism involving transfer of a proton over several water molecules. The hydroxyl group and protonated oxygen bridge formed in the process persist (on a 10 ps time scale) and the hydroxyl group undergoes exchange using a mechanism similar to the one responsible for water dissociation. Rotational and translational dynamics of water molecules around the nanoparticle were analyzed in terms of reorientational time correlation functions and mean square displacement. While reorientation of water O-H vectors decreases quickly in the proximity of the nanoparticle surface, translational diffusion slows down more gradually. Our results give new insight into water structure, dynamics and reactivity on TiO2-nanoparticle surfaces and suggest that water dissociation on curved TiO2-nanoparticle surfaces can occur via more complex mechanisms than those previously identified for flat defect-free surfaces.
引用
收藏
页码:16536 / 16547
页数:12
相关论文
共 50 条
  • [1] CO2 Adsorption and Reactivity on Rutile TiO2(110) in Water: An Ab Initio Molecular Dynamics Study
    Klyukin, Konstantin
    Alexandrov, Vitaly
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (19) : 10476 - 10483
  • [2] Ab Initio Molecular Dynamics Simulation of the Phosphate Ion in Water: Insights into Solvation Shell Structure, Dynamics, and Kosmotropic Activity
    Sharma, Bikramjit
    Chandra, Amalendu
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (46) : 10519 - 10529
  • [3] Ab initio molecular dynamics of solvation effects and reactivity at the interface between water and ascorbic acid covered anatase TiO2 (101)
    Ritacco, Ida
    Gatta, Gianluca
    Caporaso, Lucia
    Camellone, Matteo Farnesi
    CHEMPHYSCHEM, 2024, 25 (05)
  • [4] Isoprene Reactivity on Water Surfaces from ab initio QM/MM Molecular Dynamics Simulations
    Martins-Costa, Marilia T. C.
    Ruiz-Lopez, Manuel F.
    CHEMPHYSCHEM, 2020, 21 (20) : 2263 - 2271
  • [5] Ab Initio Nonadiabatic Molecular Dynamics of Wet-Electrons on the TiO2 Surface
    Fischer, Sean A.
    Duncan, Walter R.
    Prezhdo, Oleg V.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (42) : 15483 - 15491
  • [6] High Photoreactivity on a Reconstructed Anatase TiO2(001) Surface Predicted by Ab Initio Nonadiabatic Molecular Dynamics
    Tu, Youyou
    Chu, Weibin
    Shi, Yongliang
    Zhu, Wenguang
    Zheng, Qijing
    Zhao, Jin
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (25): : 5766 - 5775
  • [7] Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics
    Andrade, Marcos F. Calegari
    Ko, Hsin-Yu
    Zhang, Linfeng
    Car, Roberto
    Selloni, Annabella
    CHEMICAL SCIENCE, 2020, 11 (09) : 2335 - 2341
  • [8] Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics
    Agosta, Lorenzo
    Brandt, Erik G.
    Lyubartsev, Alexander P.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (02)
  • [9] Ab Initio Study of Water Adsorption and Reactivity on the (211) Surface of Anatase TiO2
    Xu, Jing
    Xu, Li-Fang
    Li, Zhen-Zhen
    Wang, Jian-Tao
    Lin, Zhe-Shuai
    Liu, Kai
    Cao, Yong-Ge
    Selloni, Annabella
    PHYSICAL REVIEW APPLIED, 2016, 5 (06):
  • [10] Mixed Molecular and Dissociative Water Adsorption on Hydroxylated TiO2(110): An Infrared Spectroscopy and Ab Initio Molecular Dynamics Study
    Petrik, Nikolay G.
    Baer, Marcel D.
    Mundy, Christopher J.
    Kimmel, Greg A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (51) : 21616 - 21627