A framework for semantic image annotation using LEGION algorithm

被引:2
|
作者
Kishorekumar, R. [1 ]
Deepa, P. [1 ]
机构
[1] Govt Coll Technol, Dept Elect & Commun Engn, Coimbatore 641013, Tamil Nadu, India
来源
JOURNAL OF SUPERCOMPUTING | 2020年 / 76卷 / 06期
关键词
Image annotation; LEGION; Segmentation; SVM; SEGMENTATION; CLASSIFICATION; IMPLEMENTATION; EXTRACTION; SPLIT; PIXEL;
D O I
10.1007/s11227-018-2280-2
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A new method for the annotation of multispectral satellite images based on image segmentation is proposed in this paper. This method performs the multispectral image annotation by incorporating a modified locally excitatory globally inhibitory oscillatory network (LEGION) algorithm and cascaded support vector machine (SVM) classifier. Initially, images in the training set are represented with semantic concepts. The testing image is segmented into various image regions based on the color information. Segmented image regions are classified using cascaded SVM classifier based on the probabilities of semantic classes. Experiments are conducted on multispectral images of Coimbatore, Tamil Nadu, India and the result validates the effectiveness of the proposed image annotation algorithm.
引用
收藏
页码:4169 / 4183
页数:15
相关论文
共 50 条
  • [41] Semantic hierarchies for image annotation: A survey
    Tousch, Anne-Marie
    Herbin, Stephane
    Audibert, Jean-Yves
    PATTERN RECOGNITION, 2012, 45 (01) : 333 - 345
  • [42] Image Annotation Based on Semantic Rules
    Ion, A. L.
    HUMAN-COMPUTER SYSTEMS INTERACTION: BACKGROUNDS AND APPLICATIONS, 2009, 60 : 83 - 94
  • [43] Semantic Cohesion for Image Annotation and Retrieval
    Jair Escalante, Hugo
    Enrique Sucar, Luis
    Montes-y-Gomez, Manuel
    COMPUTACION Y SISTEMAS, 2012, 16 (01): : 121 - 126
  • [44] Automatic Image Annotation using Possibilistic Clustering Algorithm
    Ben Ismail, Mohamed Maher
    Alfaraj, Sara N.
    Bchir, Ouiem
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2019, 19 (04) : 250 - 262
  • [45] Automatic Image Annotation Using an Evolutionary Algorithm (IAGA)
    Bahrami, S.
    Abadeh, M. Saniee
    2014 7TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2014, : 320 - 325
  • [46] A framework for automated image annotation
    Wang, L.
    Khan, L.
    Thuraisingham, B.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2007, 22 (1-2): : 15 - 24
  • [47] Review: Automatic Image Annotation for Semantic Image Retrieval
    Abioui, Hasna
    Idarrou, Ali
    Bouzit, Ali
    Mammass, Driss
    IMAGE AND SIGNAL PROCESSING (ICISP 2018), 2018, 10884 : 129 - 137
  • [48] Image Segmentation and Labeling Using Free-form Semantic Annotation
    Tegen, Agnes
    Weegar, Rebecka
    Hammarlund, Linus
    Oskarsson, Magnus
    Jiang, Fangyuan
    Medved, Dennis
    Nugues, Pierre
    Astrom, Kalle
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2281 - 2286
  • [49] AUTOMATIC IMAGE ANNOTATION USING INVERSE MAPS FROM SEMANTIC EMBEDDINGS
    Thiagarajan, J. J.
    Ramamurthy, K. N.
    Sattigeri, P.
    Bremer, P. T.
    Spanias, A.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3107 - 3111
  • [50] A Model for Semantic Annotation of Environmental Resources: The TaToo Semantic Framework
    Pariente, Tomas
    Maria Fuentes, Jose
    Angeles Sanguino, Maria
    Yurtsever, Sinan
    Avellino, Giuseppe
    Rizzoli, Andrea E.
    Nesic, Sasa
    ENVIRONMENTAL SOFTWARE SYSTEMS: FRAMEWORKS OF EENVIRONMENT, 2011, 359 : 419 - +