Global normal forms for MIMO nonlinear systems, with applications to stabilization and disturbance attenuation

被引:44
作者
Schwartz, B [1 ]
Isidori, A
Tarn, TJ
机构
[1] Washington Univ, Dept Syst Sci & Math, St Louis, MO 63130 USA
[2] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, I-00184 Rome, Italy
关键词
MIMO nonlinear systems; global normal forms; backstepping method; global stabilization; disturbance attenuation;
D O I
10.1007/PL00009847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A geometric characterization of a class of square invertible nonlinear systems that can be molded into a normal form by a global diffeomorphism is detailed. Then additional conditions are fashioned that permit the implementation of the recursive design method known as "backstepping."
引用
收藏
页码:121 / 142
页数:22
相关论文
共 13 条
[1]  
[Anonymous], 2013, Nonlinear control systems
[2]   ASYMPTOTIC STABILIZATION OF MINIMUM PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (10) :1122-1137
[3]   A note on almost disturbance decoupling for nonlinear minimum phase systems [J].
Isidori, A .
SYSTEMS & CONTROL LETTERS, 1996, 27 (03) :191-194
[4]  
ISIDORI A, 1995, P 3 IFAC S NONL CONT, P91
[5]  
Kristic M., 1995, Nonlinear and Adaptive Control Design
[6]   NONLINEAR H-INFINITY ALMOST DISTURBANCE DECOUPLING [J].
MARINO, R ;
RESPONDEK, W ;
VANDERSCHAFT, AJ ;
TOMEI, P .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :159-168
[7]   SPECIAL COORDINATE BASIS FOR MULTIVARIABLE LINEAR-SYSTEMS - FINITE AND INFINITE ZERO STRUCTURE, SQUARING DOWN AND DECOUPLING [J].
SANNUTI, P ;
SABERI, A .
INTERNATIONAL JOURNAL OF CONTROL, 1987, 45 (05) :1655-1704
[8]  
Schwartz B, 1996, IEEE DECIS CONTR P, P227, DOI 10.1109/CDC.1996.574301
[9]  
Sepulchre R., 1997, Constructive Nonlinear Control
[10]   ON CHARACTERIZATIONS OF THE INPUT-TO-STATE STABILITY PROPERTY [J].
SONTAG, ED ;
WANG, Y .
SYSTEMS & CONTROL LETTERS, 1995, 24 (05) :351-359