Study on vibration of offshore wind turbine supporting system under the wind-wave coupling effect

被引:0
|
作者
Zhang, P. Y. [1 ,2 ,3 ]
Guo, Y. H. [3 ]
Ding, H. Y. [1 ,2 ,3 ]
Xiong, K. P. [3 ]
Yang, Y. F. [3 ]
机构
[1] Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Key Lab Coast Civil Struct Safety, Minist Educ, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Sch Civil Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
wind-wave coupling effect; offshore wind turbine; dynamic characteristics; DYNAMIC-ANALYSIS; SIMULATION; CAPACITY;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
For offshore wind turbines, the wind and wave loads are the main actions exerted on the offshore structures during the operational process. In order to reasonably simulate the wind-wave coupling effect and the dynamic characteristics of the structure under the coupling effect, the Davenport horizontal fluctuating wind speed spectrum is processed according to the Fourier transform and the harmonic superposition method, thus the fluctuating wind spectrum which coincided well with the target power spectrum is acquired. On the basis of the random wave theory, the calculation equation of wave load for offshore wind turbine structures are put forward. Besides, the wind and wave coupling mechanism analysis is carried out by Turkstra method. In numerical analysis, the integrated finite element model of the offshore wind turbine structure is established considering the interaction between the wind turbine foundation and the soil. Meanwhile, based on the frequency domain method, the in-site measured acceleration signals of an offshore wind turbine are processed and analyzed and the dynamic characteristics of each part of the wind turbine supporting system are obtained. Comparing the measured values with the numerical simulation results, it shows that the calculation method of the wind-wave coupling effect has a preferable accuracy as well as a certain amount of safety coefficient, which can ensure the safety of the structure in actual operation process.
引用
收藏
页码:2655 / 2668
页数:14
相关论文
共 50 条
  • [1] Study on Aerodynamic Performance and Wake Characteristics of a Floating Offshore Wind Turbine in Wind-Wave Coupling Field
    Liang, Xiaoling
    Li, Zheng
    Han, Xingxing
    Fu, Shifeng
    Zhu, Weijun
    Pu, Tianmei
    Sun, Zhenye
    Yang, Hua
    Shen, Wenzhong
    SUSTAINABILITY, 2024, 16 (13)
  • [2] Effect of Turbulence Intensity on Aerodynamic Loads of Floating Wind Turbine under Wind-Wave Coupling Effect
    Tian, Wenxin
    Shi, Qiang
    Zhang, Lidong
    Ren, Hehe
    Yu, Hongfa
    Chen, Yibing
    Feng, Zhengcong
    Bai, Yuan
    SUSTAINABILITY, 2024, 16 (07)
  • [3] Dynamic response of offshore wind turbine monopile foundation under wind-wave loads
    Akwaa, Godfred F.
    Gao, Meng
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-MARITIME ENGINEERING, 2023, 176 (02) : 48 - 61
  • [4] Dynamics of offshore wind turbine and its seabed foundation under combined wind-wave loading
    Yu, Dawei
    Ye, Jianhong
    Yin, Changquan
    OCEAN ENGINEERING, 2023, 286
  • [5] Efficient fatigue damage estimation of offshore wind turbine foundation under wind-wave actions
    Li, Tian
    Yang, Qingshan
    Zhang, Xuesen
    Ma, Yida
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2024, 221
  • [6] Optimization of wind-wave hybrid system based on wind-wave coupling model
    Liu, Tiesheng
    Liu, Yanjun
    Huang, Shuting
    Xue, Gang
    IET RENEWABLE POWER GENERATION, 2024, 18 (08) : 1407 - 1427
  • [7] Wind-Wave Coupling Effect on the Dynamic Response of a Combined Wind-Wave Energy Converter
    Li, Jinghui
    Shi, Wei
    Zhang, Lixian
    Michailides, Constantine
    Li, Xin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (10)
  • [8] The influence of the joint wind-wave environment on offshore wind turbine support structure loads
    Agarwal, Puneet
    Manuel, Lance
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (03):
  • [9] Incorporating wind-wave misalignment and load directionality into the design of offshore wind turbine foundations
    Arany, L.
    Macdonald, J. H. G.
    Hogan, S. J.
    Bhattacharya, S.
    INSIGHTS AND INNOVATIONS IN STRUCTURAL ENGINEERING, MECHANICS AND COMPUTATION, 2016, : 959 - 965
  • [10] Effects of wind-wave misalignment on dynamic characteristics of floating offshore wind turbine foundation
    Li X.
    Zhu C.
    Tan J.
    Fan Z.
    Ni G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (13): : 230 - 237