An integer linear programming approach for finding deregulated subgraphs in regulatory networks

被引:39
作者
Backes, Christina [1 ]
Rurainski, Alexander [2 ]
Klau, Gunnar W. [3 ]
Mueller, Oliver [4 ]
Stoeckel, Daniel [4 ]
Gerasch, Andreas [5 ]
Kuentzer, Jan [6 ]
Maisel, Daniela [6 ]
Ludwig, Nicole [1 ]
Hein, Matthias [7 ]
Keller, Andreas [1 ,8 ]
Burtscher, Helmut [9 ]
Kaufmann, Michael [5 ]
Meese, Eckart [1 ]
Lenhof, Hans-Peter [4 ]
机构
[1] Univ Saarland, Dept Human Genet, D-66421 Homburg, Germany
[2] Univ Saarland, Starterzentrum, D-66123 Saarbrucken, Germany
[3] Ctr Wiskunde & Informat, Life Sci Grp, NL-1098 XG Amsterdam, Netherlands
[4] Univ Saarland, Ctr Bioinformat, D-66041 Saarbrucken, Germany
[5] Univ Tubingen, Wilhelm Schickard Inst Comp Sci, D-72076 Tubingen, Germany
[6] Roche Diagnost GmbH, Pharma Res Sci Informat, D-82377 Penzberg, Germany
[7] Univ Saarland, Machine Learning Grp, D-66041 Saarbrucken, Germany
[8] Siemens Healthcare, Strategy, D-91052 Erlangen, Germany
[9] Roche Diagnost GmbH, Discovery Oncol, D-82377 Penzberg, Germany
关键词
GENE-EXPRESSION; SUBNETWORK MARKERS; EPITHELIAL-CELLS; SYSTEMS BIOLOGY; MICROARRAY DATA; IDENTIFICATION; PATHWAYS; CANCER; BRCA1; GLIOBLASTOMA;
D O I
10.1093/nar/gkr1227
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deregulation of cell signaling pathways plays a crucial role in the development of tumors. The identification of such pathways requires effective analysis tools that facilitate the interpretation of expression differences. Here, we present a novel and highly efficient method for identifying deregulated subnetworks in a regulatory network. Given a score for each node that measures the degree of deregulation of the corresponding gene or protein, the algorithm computes the heaviest connected subnetwork of a specified size reachable from a designated root node. This root node can be interpreted as a molecular key player responsible for the observed deregulation. To demonstrate the potential of our approach, we analyzed three gene expression data sets. In one scenario, we compared expression profiles of non-malignant primary mammary epithelial cells derived from BRCA1 mutation carriers and of epithelial cells without BRCA1 mutation. Our results suggest that oxidative stress plays an important role in epithelial cells of BRCA1 mutation carriers and that the activation of stress proteins may result in avoidance of apoptosis leading to an increased overall survival of cells with genetic alterations. In summary, our approach opens new avenues for the elucidation of pathogenic mechanisms and for the detection of molecular key players.
引用
收藏
页数:13
相关论文
共 60 条
[1]   From genes to functional classes in the study of biological systems [J].
Al-Shahrour, Fatima ;
Arbiza, Leonardo ;
Dopazo, Hernan ;
Huerta-Cepas, Jaime ;
Minguez, Pablo ;
Montaner, David ;
Dopazo, Joaquin .
BMC BIOINFORMATICS, 2007, 8 (1)
[2]  
[Anonymous], 1998, Theory of linear and integer programming
[3]   Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history:: A combined analysis of 22 studies [J].
Antoniou, A ;
Pharoah, PDP ;
Narod, S ;
Risch, HA ;
Eyfjord, JE ;
Hopper, JL ;
Loman, N ;
Olsson, H ;
Johannsson, O ;
Borg, Å ;
Pasini, B ;
Radice, P ;
Manoukian, S ;
Eccles, DM ;
Tang, N ;
Olah, E ;
Anton-Culver, H ;
Warner, E ;
Lubinski, J ;
Gronwald, J ;
Gorski, B ;
Tulinius, H ;
Thorlacius, S ;
Eerola, H ;
Nevanlinna, H ;
Syrjäkoski, K ;
Kallioniemi, OP ;
Thompson, D ;
Evans, C ;
Peto, J ;
Lalloo, F ;
Evans, DG ;
Easton, DF .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (05) :1117-1130
[4]   GeneTrail -: advanced gene set enrichment analysis [J].
Backes, Christina ;
Keller, Andreas ;
Kuentzer, Jan ;
Kneissl, Benny ;
Comtesse, Nicole ;
Elnakady, Yasser A. ;
Mueller, Rolf ;
Meese, Eckart ;
Lenhof, Hans-Peter .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W186-W192
[5]   Gene expression omnibus: Microarray data storage, submission, retrieval, and analysis [J].
Barrett, Tanya ;
Edgar, Ron .
DNA MICROARRAYS, PART B: DATABASES AND STATISTICS, 2006, 411 :352-369
[6]   BioNet: an R-Package for the functional analysis of biological networks [J].
Beisser, Daniela ;
Klau, Gunnar W. ;
Dandekar, Thomas ;
Muller, Tobias ;
Dittrich, Marcus T. .
BIOINFORMATICS, 2010, 26 (08) :1129-1130
[7]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[8]   Altered Proliferation and Differentiation Properties of Primary Mammary Epithelial Cells from BRCA1 Mutation Carriers [J].
Burga, Laura N. ;
Tung, Nadine M. ;
Troyan, Susan L. ;
Bostina, Mihnea ;
Konstantinopoulos, Panagiotis A. ;
Fountzilas, Helena ;
Spentzos, Dimitrios ;
Miron, Alexander ;
Yassin, Yosuf A. ;
Lee, Bernard T. ;
Wulf, Gerburg M. .
CANCER RESEARCH, 2009, 69 (04) :1273-1278
[9]   Differential network expression during drug and stress response [J].
Cabusora, L ;
Sutton, E ;
Fulmer, A ;
Forst, CV .
BIOINFORMATICS, 2005, 21 (12) :2898-2905
[10]   Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion [J].
Chan, AY ;
Coniglio, SJ ;
Chuang, YY ;
Michaelson, D ;
Knaus, UG ;
Philips, MR ;
Symons, M .
ONCOGENE, 2005, 24 (53) :7821-7829