Hopf Differentials and Smoothing Sobolev Homeomorphisms

被引:40
作者
Iwaniec, Tadeusz [1 ,2 ]
Kovalev, Leonid V. [1 ]
Onninen, Jani [1 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
基金
美国国家科学基金会; 芬兰科学院;
关键词
QUASI-CONFORMAL MAPPINGS; REGULARITY; APPROXIMATION;
D O I
10.1093/imrn/rnr144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that planar homeomorphisms can be approximated by diffeomorphisms in the Sobolev space W-1,W-2 and in the Royden algebra. As an application, we show that every discrete and open planar mapping with a holomorphic Hopf differential is harmonic.
引用
收藏
页码:3256 / 3277
页数:22
相关论文
共 28 条
[1]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[2]  
[Anonymous], 2009, Princeton Mathematical Series
[3]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[4]  
[Anonymous], 1991, 2 DIMENSIONAL GEOMET
[5]  
[Anonymous], 1983, CBMS Regional Conference Series in Math., vol. 50, Amer. Math. Soc
[6]  
Ball J.M., 1999, FDN COMPUT MATH, V284, P1
[8]  
Bellido JC, 2011, HOUSTON J MATH, V37, P449
[9]  
Dierkes U, 1992, Minimal Surfaces, VI
[10]  
Duren P., 2004, CAMBRIDGE TRACTS MAT, V156