An Erdos-R,v,sz type law of the iterated logarithm for reflected fractional Brownian motion

被引:2
作者
Debicki, K. [1 ]
Kosinski, K. M. [1 ]
机构
[1] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
关键词
Extremes of Gaussian fields; Storage processes; Fractional Brownian motion; Law of the iterated logarithm; GAUSSIAN-PROCESSES; RUIN PROBABILITY; EXTREMES; INPUT; MAXIMUM;
D O I
10.1007/s10687-017-0296-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a fractional Brownian motion with Hurst parameter H a (0,1). For the stationary storage process , t ae<yen> 0, we provide a tractable criterion for assessing whether, for any positive, non-decreasing function f, equals 0 or 1. Using this criterion we find that, for a family of functions f (p) (t), such that , for some , . Consequently, with , for p ae<yen> 0, and a.s. Complementary, we prove an Erdos-R,v,sz type law of the iterated logarithm lower bound on xi (p) (t), i.e., a.s., p > 1; a.s., p a (0,1], where h (p) (t) = (1/z (p) (t))p loglog t.
引用
收藏
页码:729 / 749
页数:21
相关论文
共 19 条