Grain analysis of atomic force microscopy images via persistent homology

被引:8
作者
Duman, Ali Nabi [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
关键词
Atomic force microscope; Topological data analysis; Persistent homology; Image processing; Topography; Surface roughness; SURFACE-ROUGHNESS MEASUREMENTS; PARAMETERS; TOPOLOGY; DENSITY; MODES; AFM;
D O I
10.1016/j.ultramic.2020.113176
中图分类号
TH742 [显微镜];
学科分类号
摘要
Atomic force microscopy (AFM) is an established technique in nanoscale grain analysis due to its accuracy in producing 3-dimensional images. Even though height threshold and watershed algorithms are commonly used to determine the grain size and number of grains, they mostly require image processing that result in the change of topographical features of the surface that generates misleading conclusions. In this study, we use persistent homology, a method of representing topological features, to obtain more accurate information about the granular surfaces from unprocessed AFM images than the conventional methods. The method is also useful as a robust alternative to common parameters describing the topography of the AFM images. Most of these parameters such as arithmetic roughness and root-mean-squared roughness are represented by a single number which results in uncertainty in characterization of different surfaces. Persistent homology provides more precise summary about surface properties than a single parameter.
引用
收藏
页数:15
相关论文
共 40 条
[1]  
[Anonymous], 2010, ATOMIC FORCE MICROSC, DOI [10.1002/0471238961.0120151319011809.a01.pub2., DOI 10.1002/0471238961.0120151319011809.A01]
[2]   Quasi-stabilized hydration layers on muscovite mica under a thin water film grown from humid air [J].
Arai, Toyoko ;
Sato, Kohei ;
Iida, Asuka ;
Tomitori, Masahiko .
SCIENTIFIC REPORTS, 2017, 7
[3]   Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM [J].
Boussu, K ;
Van der Bruggen, B ;
Volodin, A ;
Snauwaert, J ;
Van Haesendonck, C ;
Vandecasteele, C .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 286 (02) :632-638
[4]   TOPOLOGY AND DATA [J].
Carlsson, Gunnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) :255-308
[5]   Proximity of Persistence Modules and their Diagrams [J].
Chazal, Frederic ;
Cohen-Steiner, David ;
Glisse, Marc ;
Guibas, Leonidas J. ;
Oudot, Steve Y. .
PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, :237-246
[6]   Angstrom-Resolved Metal-Organic Framework-Liquid Interfaces [J].
Chiodini, Stefano ;
Reinares-Fisac, Daniel ;
Espinosa, Francisco M. ;
Gutierrez-Puebla, Enrique ;
Monge, Angeles ;
Gandara, Felipe ;
Garcia, Ricardo .
SCIENTIFIC REPORTS, 2017, 7
[7]   Stability of persistence diagrams [J].
Cohen-Steiner, David ;
Edelsbrunner, Herbert ;
Harer, John .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) :103-120
[8]  
Connell S.D., QUANTITATIVE ANAL ST, P29, DOI [10.1007/978-1-4939-8894-5_2., DOI 10.1007/978-1-4939-8894-5_2]
[9]   fitdistrplus: An R Package for Fitting Distributions [J].
Delignette-Muller, Marie Laure ;
Dutang, Christophe .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 64 (04) :1-34
[10]  
Dufrêne YF, 2017, NAT NANOTECHNOL, V12, P295, DOI [10.1038/nnano.2017.45, 10.1038/NNANO.2017.45]