The free splitting complex of a free group, I: hyperbolicity

被引:48
作者
Handel, Michael [1 ]
Mosher, Lee
机构
[1] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
基金
美国国家科学基金会;
关键词
AUTOMORPHISMS; GEOMETRY;
D O I
10.2140/gt.2013.17.1581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the free splitting complex of a finite rank free group, also known as Hatcher's sphere complex, is hyperbolic.
引用
收藏
页码:1581 / 1670
页数:90
相关论文
共 22 条
[1]  
[Anonymous], 2000, ANN MATH
[2]  
[Anonymous], 2013, GEOM TOPOL
[3]   Automorphisms of the Graph of Free Splittings [J].
Aramayona, Javier ;
Souto, Juan .
MICHIGAN MATHEMATICAL JOURNAL, 2011, 60 (03) :483-493
[4]   The Tits alternative for out(Fn) I:: Dynamics of exponentially-growing automorphisms [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
ANNALS OF MATHEMATICS, 2000, 151 (02) :517-623
[5]   BOUNDING THE COMPLEXITY OF SIMPLICIAL GROUP-ACTIONS ON TREES [J].
BESTVINA, M ;
FEIGHN, M .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :449-469
[6]   Laminations, trees, and irreducible automorphisms of free groups [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (02) :215-244
[7]  
CULLER M, 1987, P LOND MATH SOC, V55, P571
[8]  
Guirardel V., ARXIV10024564
[9]   Lipschitz retraction and distortion for subgroups of Out(Fn) [J].
Handel, Michael ;
Mosher, Lee .
GEOMETRY & TOPOLOGY, 2013, 17 (03) :1535-1579
[10]   HOMOLOGICAL STABILITY FOR AUTOMORPHISM-GROUPS OF FREE GROUPS [J].
HATCHER, A .
COMMENTARII MATHEMATICI HELVETICI, 1995, 70 (01) :39-62