Fused 3-D spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification

被引:59
作者
Sellami, Akrem [1 ,2 ]
Ben Abbes, Ali [2 ,3 ]
Barra, Vincent [4 ]
Farah, Imed Riadh [2 ,5 ]
机构
[1] INRIA Nancy Grand Est, LORIA, CNRS, UMR 7503, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Manouba, RIADI Lab, ENSI, Campus Univ Manouba, Manouba 2010, Tunisia
[3] Univ Sherbrooke, Ctr Applicat & Rech Teledetect CARTEL, Sherbrooke, PQ, Canada
[4] Clermont Auvergne Univ, UMR 6158, LIMOS, CNRS, F-63000 Clermont Ferrand, France
[5] IMT Atlantique, ITI Dept, F-29238 Brest, France
关键词
Hyperspectral image classification; Dimensionality reduction; Convolutional Neural Network (CNN); Band clustering; Feature extraction; CONSTRAINED BAND SELECTION;
D O I
10.1016/j.patrec.2020.08.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, classification and dimensionality reduction (DR) have become important issues of hyperspectral image (HSI) analysis. Especially, HSI classification is a challenging task due to the high-dimensional feature space, with a large number of spectral bands, and a low number of labeled samples. In this paper, we propose a new HSI classification approach, which is called fused 3-D spectral-spatial deep neural networks for hyperspectral image classification. We propose an unsupervised band selection method to avoid the problem of redundancy between spectral bands and automatically find a set of groups Ck each one containing similar spectral bands. Moreover, the model uses the different groups of selected bands to extract spectral-spatial features in order to improve the classification rate. Each group is associated with a 3-D CNN model, which are then fused to improve the precision of classification. The main advantage of the proposed method is to keep the initial spectral-spatial features by automatically selecting relevant spectral bands, which improves the classification of HSI using a low number of labeled samples. Experiments on two real HSIs, Indian Pines and Salinas datasets, are performed to demonstrate the effectiveness of the proposed method. Results show that the proposed method reaches competitive good performances, and achieves better classification rates compared to various state-of-the-art techniques. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:594 / 600
页数:7
相关论文
共 50 条
  • [41] Deep Multiscale Spectral-Spatial Feature Fusion for Hyperspectral Images Classification
    Liang, Miaomiao
    Jiao, Licheng
    Yang, Shuyuan
    Liu, Fang
    Hou, Biao
    Chen, Huan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (08) : 2911 - 2924
  • [42] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [43] Hyperspectral Image Classification Via Spectral-Spatial Random Patches Network
    Cheng, Chunbo
    Li, Hong
    Peng, Jiangtao
    Cui, Wenjing
    Zhang, Liming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4753 - 4764
  • [44] Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification
    Houari, Youcef Moudjib
    Duan, Haibin
    Zhang, Baochang
    Maher, Ali
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 221 - 225
  • [45] Classification of hyperspectral images by deep learning of spectral-spatial features
    Ding, Haiyong
    Xu, Luming
    Wu, Yue
    Shi, Wenzhong
    ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (12)
  • [46] SPECTRAL-SPATIAL MULTISCALE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Shi
    Jing, Haitao
    Xue, Huazhu
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 389 - 395
  • [47] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    REMOTE SENSING, 2019, 11 (16)
  • [48] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [49] Spectral-Spatial Classification of Hyperspectral Image Based on Discriminant Analysis
    Yuan, Haoliang
    Tang, Yuan Yan
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2035 - 2043
  • [50] Hyperspectral Image Classification Based on Nonlinear Spectral-Spatial Network
    Pan, Bin
    Shi, Zhenwei
    Zhang, Ning
    Xie, Shaobiao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1782 - 1786