Reynolds-Averaged Simulation of the Fully Developed Turbulent Drag Reduction Flow in Concentric Annuli

被引:6
作者
Xiong, Xiao [1 ]
Zhang, Yan [1 ]
Rahman, Mohammad Azizur [2 ]
机构
[1] Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NB A1B 3X7, Canada
[2] Texas A&M Univ Qatar, Dept Petr Engn, POB 23874, Doha, Qatar
来源
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME | 2020年 / 142卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
Reynolds-averaged modeling; polymer-induced drag reduction; concentric annulus; FENE-P; transverse curvature effect; CHANNEL FLOW; MODEL;
D O I
10.1115/1.4047531
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Reynolds-averaged modeling is performed for polymer-induced drag reduction (DR) fluid at the fully developed turbulent regime in a concentric annulus by using the commercial code, ansys-fluent. The numerical approach adopted in this study relies on a modified k-epsilon- v2<overbar></mml:mover>-f model to characterize the turbulence and the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model to represent the rheological behavior of the polymer solution. The near-wall axial velocity, Reynolds stress, and turbulent kinetic energy (TKE) budget near both walls of the annulus (fixed radius ratio of 0.4) are compared in detail at a constant Reynolds number ( Re=10<mml:mo>,587) and various rheological parameters (Weissenberg number We in the range of 1-7 and the maximum polymer elongation L=30 and 100). Current simulation has predicted the redistributions of turbulent statistics in the annulus, where the two turbulent boundary layers (TBLs) of the DR flow differ more compared to those of its Newtonian counterpart. The difference is also found to be highly dependent on the rheological properties of the viscoelastic fluid.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation Closure for Separated Transitional Flows [J].
Hodara, Joachim ;
Smith, Marilyn J. .
AIAA JOURNAL, 2017, 55 (06) :1948-1958
[42]   Drag Reduction in Polymer-Laden Turbulent Pipe Flow [J].
Serafini, Francesco ;
Battista, Francesco ;
Gualtieri, Paolo ;
Casciola, Carlo Massimo .
FLUIDS, 2022, 7 (11)
[43]   Drag reduction of turbulent flow over thin rectangular riblets [J].
El-Samni, O. A. ;
Chun, H. H. ;
Yoon, H. S. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2007, 45 (2-8) :436-454
[44]   Uncertainty quantification analysis of Reynolds-averaged Navier-Stokes simulation of spray swirling jets undergoing vortex breakdown [J].
Liberatori, Jacopo ;
Galassi, Riccardo M. ;
Valorani, Mauro ;
Ciottoli, Pietro P. .
INTERNATIONAL JOURNAL OF SPRAY AND COMBUSTION DYNAMICS, 2023, 15 (04) :218-236
[45]   A comment on the “linear” law of the wall for fully developed turbulent channel flow [J].
A. Cenedese ;
G. P. Romano ;
R. A. Antonia .
Experiments in Fluids, 1998, 25 :165-170
[46]   Large-Eddy Simulation/Reynolds-Averaged Navier-Stokes Simulations of High-Speed Mixing Processes [J].
Zilberter, Ilya A. ;
Edwards, Jack R. .
AIAA JOURNAL, 2014, 52 (07) :1486-1501
[47]   Wavelet-Based Adaptive Unsteady Reynolds-Averaged Navier-Stokes Simulations of Wall-Bounded Compressible Turbulent Flows [J].
Ge, Xuan ;
Vasilyev, Oleg V. ;
De Stefano, Giuliano ;
Hussaini, M. Yousuff .
AIAA JOURNAL, 2020, 58 (04) :1529-1549
[48]   Proposal of a turbulent Prandtl number model for Reynolds-averaged Navier-Stokes approach on the modeling of turbulent heat transfer of low-Prandtl number liquid metal [J].
Huang, Xi ;
Pang, Bo ;
Chai, Xiang ;
Yin, Yuan .
FRONTIERS IN ENERGY RESEARCH, 2022, 10
[49]   Simulation of vertical dispersion of oil droplets by Langmuir supercells through a Reynolds-averaged Eulerian formulation combined with Lagrangian particle tracking [J].
Perez, A. J. ;
Cui, F. ;
Penaloza-Gutierrez, J. ;
Zeidi, S. ;
Sinha, N. ;
Boufadel, M. ;
Smith, C. ;
Murphy, D. W. ;
Tejada-Martinez, A. E. .
OCEAN ENGINEERING, 2021, 235
[50]   Effectiveness of active flow control for turbulent skin friction drag reduction [J].
Chung, Yongmann M. ;
Talha, Tariq .
PHYSICS OF FLUIDS, 2011, 23 (02)