Reynolds-Averaged Simulation of the Fully Developed Turbulent Drag Reduction Flow in Concentric Annuli

被引:5
作者
Xiong, Xiao [1 ]
Zhang, Yan [1 ]
Rahman, Mohammad Azizur [2 ]
机构
[1] Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NB A1B 3X7, Canada
[2] Texas A&M Univ Qatar, Dept Petr Engn, POB 23874, Doha, Qatar
来源
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME | 2020年 / 142卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
Reynolds-averaged modeling; polymer-induced drag reduction; concentric annulus; FENE-P; transverse curvature effect; CHANNEL FLOW; MODEL;
D O I
10.1115/1.4047531
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Reynolds-averaged modeling is performed for polymer-induced drag reduction (DR) fluid at the fully developed turbulent regime in a concentric annulus by using the commercial code, ansys-fluent. The numerical approach adopted in this study relies on a modified k-epsilon- v2<overbar></mml:mover>-f model to characterize the turbulence and the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model to represent the rheological behavior of the polymer solution. The near-wall axial velocity, Reynolds stress, and turbulent kinetic energy (TKE) budget near both walls of the annulus (fixed radius ratio of 0.4) are compared in detail at a constant Reynolds number ( Re=10<mml:mo>,587) and various rheological parameters (Weissenberg number We in the range of 1-7 and the maximum polymer elongation L=30 and 100). Current simulation has predicted the redistributions of turbulent statistics in the annulus, where the two turbulent boundary layers (TBLs) of the DR flow differ more compared to those of its Newtonian counterpart. The difference is also found to be highly dependent on the rheological properties of the viscoelastic fluid.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Accounting for wind-direction fluctuations in Reynolds-averaged simulation of near-range atmospheric dispersion [J].
Vervecken, Lieven ;
Camps, Johan ;
Meyers, Johan .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :142-150
[32]   TURBULENT UNSTEADY FLOW ANALYSIS OF HORIZONTAL AXIS WIND TURBINE AIRFOIL AERODYNAMICS BASED ON THE HARMONIC BALANCE REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS [J].
Campobasso, M. Sergio ;
Gigante, Fabio ;
Drofelnik, Jernej .
PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 3B, 2014,
[33]   On the drag reduction mechanism in a lubricated turbulent channel flow [J].
Solbakken, S ;
Andersson, HI .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2004, 25 (04) :618-624
[34]   Flow Behavior and Turbulent Drag Reduction of Viscoelastic Fluids [J].
Tamano, Shinji .
NIHON REOROJI GAKKAISHI, 2013, 41 (05) :289-300
[35]   Characterization of superhydrophobic surfaces for drag reduction in turbulent flow [J].
Gose, James W. ;
Golovin, Kevin ;
Boban, Mathew ;
Mabry, Joseph M. ;
Tuteja, Anish ;
Perlin, Marc ;
Ceccio, Steven L. .
JOURNAL OF FLUID MECHANICS, 2018, 845 :560-580
[36]   A dual-mesh hybrid Reynolds-averaged Navier-Stokes/Large eddy simulation study of the buoyant flow between coaxial cylinders [J].
Ali, Abdelmagid E. A. ;
Afgan, Imran ;
Laurence, Dominique ;
Revell, Alistair .
NUCLEAR ENGINEERING AND DESIGN, 2022, 393
[37]   Scaling heat transfer in fully developed turbulent channel flow [J].
Wei, T ;
Fife, P ;
Klewicki, J ;
McMurtry, P .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (25-26) :5284-5296
[38]   Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing [J].
Gatti, Davide ;
Quadrio, Maurizio .
JOURNAL OF FLUID MECHANICS, 2016, 802 :553-582
[39]   Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence [J].
Wu, Xiaohua ;
Moin, Parviz ;
Adrian, Ronald J. ;
Baltzer, Jon R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (26) :7920-7924
[40]   Reynolds-averaged Navier-Stokes simulation of nearshore Langmuir circulation and the formation of oil-particle aggregates [J].
Penaloza-Gutierrez, J. J. ;
Tejada-Martinez, A. E. ;
Boufadel, M. C. .
OCEAN MODELLING, 2024, 187