Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration

被引:142
|
作者
Stern, Michael C. [1 ]
Simeon, Fritz [1 ]
Herzog, Howard [2 ]
Hatton, T. Alan [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, MIT Energy Initiat, Cambridge, MA 02139 USA
基金
美国能源部;
关键词
MODULATED COMPLEXATION PROCESS; CO2; CAPTURE; POWER-PLANT; ABSORPTION; MEA; SEPARATION; TEMPERATURE; SOLUBILITY; SOLVENTS; REMOVAL;
D O I
10.1039/c3ee41165f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemically mediated amine regeneration is a new post-combustion capture technology with the potential to exploit the excellent removal efficiencies of thermal amine scrubbers while reducing parasitic energy losses and capital costs. The improvements result from the use of an electrochemical stripping cycle, in lieu of the traditional thermal swing, to facilitate CO2 desorption and amine regeneration; metal cations generated at an anode react with the amines, displacing the CO2, which is then flashed off, and the amines are regenerated by subsequent reduction of the metal cations in a cathode cell. The advantages of such a process include higher CO2 desorption pressures, smaller absorbers, and lower energy demands. Several example chemistries using different polyamines and copper are presented. Experimental results indicate an open-circuit efficiency of 54% (15 kJ per mole CO2) is achievable at the tested conditions and models predict that 69% efficiency is possible at higher temperatures and pressures. A bench scale system produced 1.6 mL min(-1) CO2 while operating at 0.4 volts and 42% Faradaic efficiency; this corresponds to a work of less than 100 kJ per mole.
引用
收藏
页码:2505 / 2517
页数:13
相关论文
共 50 条
  • [31] Toward sustainable hydrogen storage and carbon dioxide capture in post-combustion conditions
    Moussa, Meriem
    Bader, Najoua
    Querejeta, Nausika
    Duran, Ines
    Pevida, Covadonga
    Ouederni, Abdelmottaleb
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2017, 5 (02): : 1628 - 1637
  • [32] Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture
    Zhang, Wenbin
    Liu, Hao
    Sun, Yuan
    Cakstins, Janis
    Sun, Chenggong
    Snape, Colin E.
    APPLIED ENERGY, 2016, 168 : 394 - 405
  • [33] Application of membrane separation technology in post-combustion carbon dioxide capture process
    Li, Mo
    Jiang, Xiaobin
    He, Gaohong
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2014, 8 (02) : 233 - 239
  • [34] Energy-efficient Solvent Properties for the Post-combustion Carbon Dioxide Capture
    Jin, He
    Liu, Pei
    Li, Zheng
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 715 - 720
  • [35] A robust metal-organic framework for post-combustion carbon dioxide capture
    Qazvini, Omid T.
    Telfer, Shane G.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (24) : 12028 - 12034
  • [36] Assessment of process modifications for amine-based post-combustion carbon capture processes
    Mostafavi, Ehsan
    Ashrafi, Omid
    Navarri, Philippe
    CLEANER ENGINEERING AND TECHNOLOGY, 2021, 4
  • [37] Experimental investigation on using adsorbent for post-combustion carbon dioxide capture from CI engine exhaust
    Ravi, Maniarasu
    Rathore, Sushil Kumar
    Sivalignam, Murugan
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2022, 41 (06)
  • [38] PIM-1-assisted structuring of amine-functionalized porous organic copolymer for post-combustion carbon dioxide capture
    Zhang, Xuelin
    Song, Shuangqi
    Li, Jingde
    Yang, Yanqin
    POLYMER, 2024, 308
  • [39] Influence of amine structural characteristics on N-nitrosamine formation potential relevant to post-combustion carbon dioxide capture systems
    Dai, Ning
    Mitch, William A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [40] Synthesis of core-shell magnetic mesoporous silica nanoparticles to disperse amine functionalities for post-combustion carbon dioxide capture
    Migliardini, Fortunato
    Califano, Valeria
    Perretta, Giuseppe
    Invigorito, Carmine
    Pedrazzo, Alberto Rubin
    Ausanio, Giovanni
    Pota, Giulio
    Costantini, Aniello
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 153