Numerical dispersion in the thin-layer method

被引:31
作者
Park, J [1 ]
Kausel, E [1 ]
机构
[1] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
关键词
thin-layer method; finite element method; laminated media; waves in plates and shells; numerical dispersion; wave dispersion; seismology; elastodynamics;
D O I
10.1016/j.compstruc.2003.12.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The thin-layer method (TLM) is an effective numerical tool for the analysis of wave motions in laminated media. In a nutshell, the TLM combines the finite element method in the direction of layering together with analytical solutions for the remaining directions. This partial discretization introduces some numerical dispersion in the TLM, the degree of which depends on the refinement of the model. In this paper, we first characterize this numerical dispersion for both anti-plane (SH) and in-plane (SV-P) body waves in an unbounded medium. We then develop optimal tuning factors, with the aid of which the numerical dispersion error is minimized and the accuracy of the solution improved. Finally, we verify the effectiveness of the tuning factors by comparing the numerical results obtained with the TLM against the exact results of canonical models for guided waves in plates, and for Love and for Rayleigh waves in semi-infinite media. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:607 / 625
页数:19
相关论文
共 28 条
[1]  
Ahmadian H, 1998, INT J NUMER METH ENG, V41, P371, DOI 10.1002/(SICI)1097-0207(19980130)41:2<371::AID-NME288>3.0.CO
[2]  
2-R
[3]  
[Anonymous], 1974, R7411 MIT DEP CIV EN
[4]  
BELYTSCHKO T, 1977, INT UNION THEORETICA, P67
[5]  
Bouillard P, 1999, INT J NUMER METH ENG, V45, P783, DOI 10.1002/(SICI)1097-0207(19990710)45:7<783::AID-NME605>3.0.CO
[6]  
2-M
[7]  
BRILLOUIN L, 1953, WAVE PROPAGATION PE
[8]  
Deraemaeker A, 1999, INT J NUMER METH ENG, V46, P471, DOI 10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO
[9]  
2-6
[10]  
DRAKE LA, 1972, B SEISMOL SOC AM, V62, P1241