The stochastic energy-Casimir method

被引:8
作者
Arnaudon, Alexis [1 ]
Ganaba, Nader [1 ]
Holm, Darryl D. [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
来源
COMPTES RENDUS MECANIQUE | 2018年 / 346卷 / 04期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Stochastic geometric mechanics; Energy-Casimir method; Stochastic stability; DIRAC STRUCTURES;
D O I
10.1016/j.crme.2018.01.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1966, IZV VUZ MAT+
[2]   Noise and Dissipation on Coadjoint Orbits [J].
Arnaudon, Alexis ;
De Castro, Alex L. ;
Holm, Darryl D. .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (01) :91-145
[4]  
ARNOLD VI, 1965, DOKL AKAD NAUK SSSR+, V162, P975
[5]  
Bismut J.-M., 1980, LECT NOTES MATH, V929, P1
[6]  
Bloch A., 2015, INTERDISCIP APPL MAT
[7]   STABILIZATION OF RIGID BODY DYNAMICS BY THE ENERGY CASIMIR METHOD [J].
BLOCH, AM ;
MARSDEN, JE .
SYSTEMS & CONTROL LETTERS, 1990, 14 (04) :341-346
[8]   Existence and Uniqueness for Stochastic 2D Euler Flows with Bounded Vorticity [J].
Brzezniak, Zdzislaw ;
Flandoli, Franco ;
Maurelli, Mario .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (01) :107-142
[9]  
Cruzeiro A. B., 2017, COMMUN MATH PHYS
[10]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&