Computational study of fast methods for the eikonal equation

被引:50
作者
Gremaud, PA
Kuster, CM
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
关键词
Hamilton-Jacobi; eikonal; viscosity solution; fast marching; fast sweeping;
D O I
10.1137/040605655
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A computational study of the fast marching and the fast sweeping methods for the eikonal equation is given. It is stressed that both algorithms should be considered as "direct" ( as opposed to iterative) methods. On realistic grids, fast sweeping is faster than fast marching for problems with simple geometry. For strongly nonuniform problems and/or complex geometry, the situation may be reversed. Finally, fully second order generalizations of methods of this type for problems with obstacles are proposed and implemented.
引用
收藏
页码:1803 / 1816
页数:14
相关论文
共 19 条
[1]  
Abgrall R, 1996, COMMUN PUR APPL MATH, V49, P1339, DOI 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO
[2]  
2-B
[3]   Volume determination for bulk materials in bunkers [J].
Ahmed, SA ;
Buckingham, R ;
Gremaud, PA ;
Hauck, CD ;
Kuster, CM ;
Prodanovic, M ;
Royal, TA ;
Silantyev, V .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (13) :2239-2249
[4]  
BENTLEY J, 1985, COMMUN ACM, V28, P245
[5]   Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control [J].
Boué, M ;
Dupuis, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :667-695
[6]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[7]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[8]   A discontinuous Galerkin finite element method for Hamilton-Jacobi equations [J].
Hu, CQ ;
Shu, CW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :666-690
[9]   Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations [J].
Kao, CY ;
Osher, S ;
Qian, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 196 (01) :367-391
[10]   Finite volume schemes for Hamilton-Jacobi equations [J].
Kossioris, G ;
Makridakis, C ;
Souganidis, PE .
NUMERISCHE MATHEMATIK, 1999, 83 (03) :427-442