Computational study of fast methods for the eikonal equation

被引:48
作者
Gremaud, PA
Kuster, CM
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
关键词
Hamilton-Jacobi; eikonal; viscosity solution; fast marching; fast sweeping;
D O I
10.1137/040605655
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A computational study of the fast marching and the fast sweeping methods for the eikonal equation is given. It is stressed that both algorithms should be considered as "direct" ( as opposed to iterative) methods. On realistic grids, fast sweeping is faster than fast marching for problems with simple geometry. For strongly nonuniform problems and/or complex geometry, the situation may be reversed. Finally, fully second order generalizations of methods of this type for problems with obstacles are proposed and implemented.
引用
收藏
页码:1803 / 1816
页数:14
相关论文
共 19 条
  • [1] Abgrall R, 1996, COMMUN PUR APPL MATH, V49, P1339, DOI 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO
  • [2] 2-B
  • [3] Volume determination for bulk materials in bunkers
    Ahmed, SA
    Buckingham, R
    Gremaud, PA
    Hauck, CD
    Kuster, CM
    Prodanovic, M
    Royal, TA
    Silantyev, V
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (13) : 2239 - 2249
  • [4] BENTLEY J, 1985, COMMUN ACM, V28, P245
  • [5] Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control
    Boué, M
    Dupuis, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) : 667 - 695
  • [6] CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
  • [7] SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    CRANDALL, MG
    EVANS, LC
    LIONS, PL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) : 487 - 502
  • [8] A discontinuous Galerkin finite element method for Hamilton-Jacobi equations
    Hu, CQ
    Shu, CW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) : 666 - 690
  • [9] Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations
    Kao, CY
    Osher, S
    Qian, JL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 196 (01) : 367 - 391
  • [10] Finite volume schemes for Hamilton-Jacobi equations
    Kossioris, G
    Makridakis, C
    Souganidis, PE
    [J]. NUMERISCHE MATHEMATIK, 1999, 83 (03) : 427 - 442