Complex order parameter phase-field models derived from structural phase-field-crystal models

被引:29
|
作者
Ofori-Opoku, Nana [1 ,2 ,3 ,4 ]
Stolle, Jonathan [5 ,6 ]
Huang, Zhi-Feng [7 ]
Provatas, Nikolas [3 ,4 ]
机构
[1] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
[2] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4L7, Canada
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[4] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada
[5] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
[6] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada
[7] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
SOLID-LIQUID INTERFACE; MOLECULAR THEORY; SOLIDIFICATION; SIMULATION; ALLOYS; GROWTH;
D O I
10.1103/PhysRevB.88.104106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase-field-crystal (PFC) modeling paradigm is rapidly emerging as the model of choice when investigating materials phenomena with atomistic scale effects over diffusive time scales. Recent variants of the PFC model, so-called structural PFC (XPFC) models introduced by Greenwood et al., have further increased the capability of the method by allowing for easy access to various structural transformations in pure materials [Greenwood, Provatas, and Rottler, Phys. Rev. Lett. 105, 045702 (2010)] and binary alloys [Greenwood, Ofori-Opoku, Rottler, and Provatas, Phys. Rev. B 84, 064104 (2011)]. We present an amplitude expansion of these XPFC models, leading to a mesoscale complex order parameter, i.e., phase-field, model for two-dimensional square-triangular structures. Amplitude models retain the salient atomic scale features of the underlying PFC models, while resolving microstructures on mesoscales as traditional phase-field models. The applicability and capability of these complex-order parameter models is demonstrated with simulations of peritectic solidification and grain growth exhibiting the emergence of secondary phase structures.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Phase-field models for microstructure evolution
    Chen, LQ
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 : 113 - 140
  • [22] Phase-field models for eutectic solidification
    Lewis, D
    Pusztai, T
    Gránásy, L
    Warren, J
    Boettinger, W
    JOM, 2004, 56 (04) : 34 - 39
  • [23] Phase-field models in materials science
    Steinbach, Ingo
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (07)
  • [24] Parallel computing for phase-field models
    Vondrous, Alexander
    Selzer, Michael
    Hoetzer, Johannes
    Nestler, Britta
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2014, 28 (01): : 61 - 72
  • [25] PHASE-FIELD MODELS FOR ANISOTROPIC INTERFACES
    MCFADDEN, GB
    WHEELER, AA
    BRAUN, RJ
    CORIELL, SR
    SEKERKA, RF
    PHYSICAL REVIEW E, 1993, 48 (03) : 2016 - 2024
  • [26] Phase-field models for fluid mixtures
    Morro, A.
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (9-10) : 1042 - 1052
  • [27] Efficient thermal field computation in phase-field models
    Li, Jing-Rebecca
    Calhoun, Donna
    Brush, Lucien
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (24) : 8945 - 8957
  • [28] Generalized Swift–Hohenberg and phase-field-crystal equations based on a second-gradient phase-field theory
    Luis Espath
    Victor M. Calo
    Eliot Fried
    Meccanica, 2020, 55 : 1853 - 1868
  • [29] Gradient elasticity in Swift-Hohenberg and phase-field crystal models
    Benoit-Marechal, Lucas
    Salvalaglio, Marco
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2024, 32 (05)
  • [30] Generalized Swift-Hohenberg and phase-field-crystal equations based on a second-gradient phase-field theory
    Espath, Luis
    Calo, Victor M.
    Fried, Eliot
    MECCANICA, 2020, 55 (10) : 1853 - 1868