Complex order parameter phase-field models derived from structural phase-field-crystal models

被引:29
|
作者
Ofori-Opoku, Nana [1 ,2 ,3 ,4 ]
Stolle, Jonathan [5 ,6 ]
Huang, Zhi-Feng [7 ]
Provatas, Nikolas [3 ,4 ]
机构
[1] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
[2] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4L7, Canada
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[4] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada
[5] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
[6] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada
[7] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
SOLID-LIQUID INTERFACE; MOLECULAR THEORY; SOLIDIFICATION; SIMULATION; ALLOYS; GROWTH;
D O I
10.1103/PhysRevB.88.104106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase-field-crystal (PFC) modeling paradigm is rapidly emerging as the model of choice when investigating materials phenomena with atomistic scale effects over diffusive time scales. Recent variants of the PFC model, so-called structural PFC (XPFC) models introduced by Greenwood et al., have further increased the capability of the method by allowing for easy access to various structural transformations in pure materials [Greenwood, Provatas, and Rottler, Phys. Rev. Lett. 105, 045702 (2010)] and binary alloys [Greenwood, Ofori-Opoku, Rottler, and Provatas, Phys. Rev. B 84, 064104 (2011)]. We present an amplitude expansion of these XPFC models, leading to a mesoscale complex order parameter, i.e., phase-field, model for two-dimensional square-triangular structures. Amplitude models retain the salient atomic scale features of the underlying PFC models, while resolving microstructures on mesoscales as traditional phase-field models. The applicability and capability of these complex-order parameter models is demonstrated with simulations of peritectic solidification and grain growth exhibiting the emergence of secondary phase structures.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Phase-field-crystal models and mechanical equilibrium
    Heinonen, V.
    Achim, C. V.
    Elder, K. R.
    Buyukdagli, S.
    Ala-Nissila, T.
    PHYSICAL REVIEW E, 2014, 89 (03):
  • [2] Thermodynamics of bcc metals in phase-field-crystal models
    Jaatinen, A.
    Achim, C. V.
    Elder, K. R.
    Ala-Nissila, T.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [3] Phase-Field Models for Solidification and Crystal Growth
    Ohno, Munekazu
    INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION, 2013, 30 (01): : 24 - 29
  • [4] Controlling crystal symmetries in phase-field crystal models
    Wu, Kuo-An
    Plapp, Mathis
    Voorhees, Peter W.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)
  • [5] Localized states in passive and active phase-field-crystal models
    Holl, Max Philipp
    Archer, Andrew J.
    Gurevich, Svetlana, V
    Knobloch, Edgar
    Ophaus, Lukas
    Thiele, Uwe
    IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (05) : 896 - 923
  • [6] Simulations of phase-field models for crystal growth and phase separation
    Cartalade, Alain
    Younsi, Amina
    Regnier, Elise
    Schuller, Sophie
    2ND INTERNATIONAL SUMMER SCHOOL ON NUCLEAR GLASS WASTEFORM: STRUCTURE, PROPERTIES AND LONG-TERM BEHAVIOR (SUMGLASS 2013), 2014, 7 : 72 - 78
  • [7] Long-wavelength properties of phase-field-crystal models with second-order dynamics
    Heinonen, V.
    Achim, C. V.
    Ala-Nissila, T.
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [8] Phase-field models with hysteresis
    Krejcí, P
    Sprekels, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) : 198 - 219
  • [9] Two-component structural phase-field crystal models for graphene symmetries
    Elder, K. L. M.
    Seymour, M.
    Lee, M.
    Hilke, M.
    Provatas, N.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2113):
  • [10] Phase-field-crystal methodology for modeling of structural transformations
    Greenwood, Michael
    Rottler, Joerg
    Provatas, Nikolas
    PHYSICAL REVIEW E, 2011, 83 (03):