SUPER-RESOLUTION OF HYPERSPECTRAL IMAGES USING LOCAL SPECTRAL UNMIXING

被引:0
作者
Licciardi, G. [1 ]
Veganzones, M. A. [1 ]
Simoes, M. [1 ,2 ]
Bioucas, J. [2 ]
Chanussot, J. [1 ,3 ]
机构
[1] Grenoble INP, GIPSA Lab, St Martin Dheres, France
[2] Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
[3] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
来源
2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2014年
关键词
hyperspectral imaging; super-resolution; spectral unmixing; FUSION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For many remote sensing applications it is preferable to have images with both high spectral and spatial resolutions. On this regards, hyperspectral and multispectral images have complementary characteristics in terms of spectral and spatial resolutions. In this paper we propose an approach for the fusion of low spatial resolution hyperspectral images with high spatial resolution multispectral images in order to obtain super resolution (spatial and spectral) hyperspectral images. The proposed approach is based on the assumption that, since both hyperspectral and multispectral images acquired on the same scene, the corresponding endmembers should be the same. On a first step the hyperspectral image is spectrally down sampled in order to match the multispectral one. Then an endmember extraction algorithm is performed on the down sampled hyperspectral image and the successive abundance estimation is performed on the multispectral one. Finally, the extracted endmembers are up-sampled back to the original hyperspectral space and then used to reconstruct the super resolution hyperspectral image according to the abundances obtained from the multispectral image.
引用
收藏
页数:4
相关论文
共 9 条
[1]   Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest [J].
Alparone, Luciano ;
Wald, Lucien ;
Chanussot, Jocelyn ;
Thomas, Claire ;
Gamba, Paolo ;
Bruce, Lori Mann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3012-3021
[2]   Learning Sparse Codes for Hyperspectral Imagery [J].
Charles, Adam S. ;
Olshausen, Bruno A. ;
Rozell, Christopher J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (05) :963-978
[3]  
Dias JM, 2010, INVESTIGACAO, P1, DOI 10.14195/978-989-26-0193-9
[4]   Spatial and Spectral Image Fusion Using Sparse Matrix Factorization [J].
Huang, Bo ;
Song, Huihui ;
Cui, Hengbin ;
Peng, Jigen ;
Xu, Zongben .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03) :1693-1704
[5]  
Licciardi G., 2012, EURASIP J ADV SIG PR, V4885, P347
[6]   Spatio-spectral fusion of satellite images based on dictionary-pair learning [J].
Song, Huihui ;
Huang, Bo ;
Zhang, Kaihua ;
Zhang, Hankui .
INFORMATION FUSION, 2014, 18 :148-160
[7]  
Wald L., 2002, Presses de l'Ecole, Ecole des Mines de
[8]   N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data [J].
Winter, ME .
IMAGING SPECTROMETRY V, 1999, 3753 :266-275
[9]   Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion [J].
Yokoya, Naoto ;
Yairi, Takehisa ;
Iwasaki, Akira .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (02) :528-537