Strongly anisotropic thermal conductivity in planar hexagonal borophene oxide sheet

被引:7
|
作者
Yin, Yan [1 ]
Hu, Yanxiao [1 ]
Feng, Chunbao [1 ]
Li, Shichang [1 ]
Li, Bo-Lin [2 ]
Li, Dengfeng [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
[2] Yangtze Normal Univ, Chongqing Key Lab Extraordinary Bond Engn & Adv M, Chongqing 408100, Peoples R China
基金
中国国家自然科学基金;
关键词
Borophene oxide sheet; Anisotropic thermal conductivity; Phonon Boltzmann transport equation; First-principles calculations; 1ST-PRINCIPLES; SILICENE;
D O I
10.1016/j.physleta.2020.126457
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The flat hexagonal borophene oxide (B2O) has the highest Li storage capacity among existing two-dimensional materials. Thermal conductivity is an important parameter for the safety of Li-ion batteries. We investigate the lattice thermal conductivity of B2O by solving phonon Boltzmann transport equation combined with the first-principles calculations. We found that the relaxation time approximation remarkably underestimate the thermal conductivity (kappa) of monolayer B2O, revealing phonon hydrodynamics characteristic. The kappa of B2O from the exact solution of Boltzmann transport equation is 53 Wm(-1) K-1 and 130 Wm(-1) K-1 along armchair-direction and zigzag-direction at 300 K, respectively. B2O exhibits strong thermal transport anisotropy due to anisotropic phonon group velocity, obviously larger than that of other borophene allotropes. At room temperature, the phonon mean free path of B2O is about 231 nm and 49 nm along armchair-direction and zigzag-direction, respectively. The highly anisotropic thermal conductivity of B2O offers new possibilities for its applications in thermal management. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene
    Jia, Yue
    Li, Chun
    Jiang, Jin-Wu
    Wei, Ning
    Chen, Yang
    Zhang, Yongjie Jessica
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (02): : 813 - 823
  • [2] Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature
    Renteria, Jackie D.
    Ramirez, Sylvester
    Malekpour, Hoda
    Alonso, Beatriz
    Centeno, Alba
    Zurutuza, Amaia
    Cocemasov, Alexandr I.
    Nika, Denis L.
    Balandin, Alexander A.
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (29) : 4664 - 4672
  • [3] Anisotropic thermal conductivity in single crystal β-gallium oxide
    Guo, Zhi
    Verma, Amit
    Wu, Xufei
    Sun, Fangyuan
    Hickman, Austin
    Masui, Takekazu
    Kuramata, Akito
    Higashiwaki, Masataka
    Jena, Debdeep
    Luo, Tengfei
    APPLIED PHYSICS LETTERS, 2015, 106 (11)
  • [4] Anisotropic thermal conductivity of thin polycrystalline oxide samples
    Tiwari, A.
    Boussois, K.
    Nait-Ali, B.
    Smith, D. S.
    Blanchart, P.
    AIP ADVANCES, 2013, 3 (11):
  • [5] Lattice thermal conductivity of β12 and χ3 borophene
    何佳
    欧阳宇楼
    俞崔前
    蒋鹏飞
    任卫君
    陈杰
    Chinese Physics B, 2020, (12) : 83 - 91
  • [6] Lattice thermal conductivity of β12 and χ3 borophene
    He, Jia
    Ouyang, Yulou
    Yu, Cuiqian
    Jiang, Pengfei
    Ren, Weijun
    Chen, Jie
    CHINESE PHYSICS B, 2020, 29 (12)
  • [7] Introducing Structures from Hexagonal Borophene to Nitrophene and Their Thermal Conductivity Investigation Using a Reactive Molecular Dynamics Simulation
    Farahani, Atefe
    Foroutan, Masumeh
    Jamshidi, Masoud
    Sababkar, Mahnaz
    Boudaghi, Ahmad
    LANGMUIR, 2023, 39 (39) : 14015 - 14024
  • [8] 3D strongly anisotropic intrinsic thermal conductivity of polypropylene separator
    Alahmad, Qusai
    Rahbar, Mahya
    Karamati, Amin
    Bai, John
    Wang, Xinwei
    JOURNAL OF POWER SOURCES, 2023, 580
  • [9] ANISOTROPIC THERMAL CONDUCTIVITY
    SIMMONS, G
    JOURNAL OF GEOPHYSICAL RESEARCH, 1961, 66 (07): : 2269 - +
  • [10] Enhanced anisotropic electrical conductivity of perturbed monolayer β12-borophene
    Doan Quoc Khoa
    Hieu, Nguyen N.
    Bui Dinh Hoi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (01) : 286 - 294