The primitive equations of the ocean with delays

被引:9
作者
Medjo, T. Tachim [1 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
Primitive equations; Delays; Strong solutions; Stability; NAVIER-STOKES EQUATIONS; LARGE-SCALE OCEAN; COCYCLE ATTRACTORS;
D O I
10.1016/j.nonrwa.2007.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the primitive equations (PEs) of the ocean with delays. We prove the existence and uniqueness of their strong solution when the external force contains some delays. We also discuss the asymptotic behaviour of their weak solutions and the stability of their stationary solutions. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:779 / 797
页数:19
相关论文
共 36 条
[1]   On the two-dimensional hydrostatic Navier-Stokes equations [J].
Bresch, D ;
Kazhikhov, A ;
Lemoine, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) :796-814
[2]  
Bresch D., 2003, Differ. Integral Equ., V16, P77
[3]  
CAO C, 2005, ARXIVMATHAP05030282
[4]  
Caraballo T, 2006, DISCRETE CONT DYN-A, V15, P559
[5]   Attractors for 2D-Navier-Stokes models with delays [J].
Caraballo, T ;
Real, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :271-297
[6]   Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays [J].
Caraballo, T ;
Real, J .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2040) :3181-3194
[7]   Navier-Stokes equations with delays [J].
Caraballo, T ;
Real, J .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014) :2441-2453
[8]   Ekman boundary layers in rotating fluids [J].
Chemin, JY ;
Desjardins, B ;
Gallagher, I ;
Grenier, E .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :441-466
[9]   Anisotropy and dispersion in rotating fluids [J].
Chemin, JY ;
Desjardins, B ;
Gallagher, I ;
Grenier, E .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (12) :1055-1058
[10]  
Crauel H., 1997, J DYN DIFFER EQU, V9, P307