EQUALITY OF THE ISBELL AND SCOTT TOPOLOGIES ON FUNCTION SPACES OF c-SPACES

被引:0
作者
Lu, Chongxia [1 ]
Liu, Dexian [1 ]
Li, Qingguo [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2019年 / 45卷 / 01期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
L-dcpo; Isbell topology; Scott topology; function space; quasicontinuity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly consider the question of when the Isbell and Scott topologies coincide on the set [X -> L] of all continuous mappings from a topological space X to a dcpo L with the pointwise order. The main results are: (1) If L is a weak sober dcpo which is bi-complete, then (i) that the Isbell and Scott topologies coincide on [X -> L] for all c-spaces X implies that L is a pointed L-dcpo; (ii) that the Isbell and Scott topologies coincide on [X -> L] for all irreducible c-spaces X implies that L is an L-dcpo. (2) Let L be a quasicontinuous UBC-domain and X a c-space. If L has a least element or X is connected, then the Isbell and Scott topologies coincide on [X -> L]. (3) Let L be a quasicontinuous UFL-domain and the topological space X = (sic)(i is an element of I) X-i, where every X, is an irreducible Scott c-space and I is a nonempty finite set. If L has a least element or I is a singleton, then the Isbell and Scott topologies coincide on [X -> L].
引用
收藏
页码:265 / 284
页数:20
相关论文
共 14 条
[1]  
Abramsky S., 1994, Handbook of Logic in Computer Science, V3, P1
[2]  
[Anonymous], 2013, NEW MATH MONOGR
[3]   The way-below relation of function spaces over semantic domains [J].
Erker, T ;
Escardo, MH ;
Keimel, K .
TOPOLOGY AND ITS APPLICATIONS, 1998, 89 (1-2) :61-74
[4]  
Gierz G., 2003, ENCYCL MATH, V93
[5]   A topological duality for posets [J].
Gonzalez, Luciano J. ;
Jansana, Ramon .
ALGEBRA UNIVERSALIS, 2016, 76 (04) :455-478
[6]   All cartesian closed categories of quasicontinuous domains consist of domains [J].
Jia, Xiaodong ;
Jung, Achim ;
Kou, Hui ;
Li, Qingguo ;
Zhao, Haoran .
THEORETICAL COMPUTER SCIENCE, 2015, 594 :143-150
[7]  
Jung A., 1988, THESIS
[8]   RW-spaces and compactness of function spaces for L-domains [J].
Kou, H ;
Luo, MK .
TOPOLOGY AND ITS APPLICATIONS, 2003, 129 (03) :211-220
[9]  
Lawson J.D., 1990, OPEN PROBLEMS TOPOLO, P351
[10]   Maximal classes of topological spaces and domains determined by function spaces [J].
Lawson, JD ;
Xu, LS .
APPLIED CATEGORICAL STRUCTURES, 2003, 11 (04) :391-402