Evaluation of Minimum, Maximum and Optimum Source Temperature for Solar-Powered Adsorption Refrigeration System

被引:5
作者
Banker, Nitin D. [1 ]
Dandotiya, Devendra [2 ]
Morthala, Sai Vamsi Reddy [3 ]
Gaddam, Mahesh [3 ]
Kakileti, Sridhar [3 ]
机构
[1] Ahmedabad Univ, Sch Engn & Appl Sci, Ahmadabad 380009, Gujarat, India
[2] Presidency Univ, Dept Mech Engn, Bangalore 560064, Karnataka, India
[3] Shiv Nadar Univ, Dept Mech Engn, Dadri 201314, UP, India
关键词
Adsorption refrigeration system; Cooling capacity; COP; Desorption temperature; ENHANCED MASS-TRANSFER; THERMODYNAMIC ANALYSIS; PERFORMANCE; DESIGN; PAIR; OPTIMIZATION; SIMULATION; WORKING; ETHANOL; ENERGY;
D O I
10.1007/s13369-020-04865-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to the utilization of solar thermal energy and environmentally friendly nature, globally there is a huge thrust toward the development of vapor adsorption refrigeration systems. Indeed, it is necessary to identify the minimum, maximum and optimum temperatures of heat source for solar-powered adsorption systems. With this objective, the presented paper focuses on the evaluation of lower, upper and optimum temperatures of the heat source to run the adsorption refrigeration system. Performance parameters, cooling capacity and coefficient of performance (COP), have been utilized to derive the limits of source (desorption) temperatures and applied to two different adsorbent-adsorbate pairs, namely Maxsorb III-ethanol and Maxsorb III- R134a. The adsorption and evaporator temperatures considered for the analysis are 25-40 degrees C and - 10-10 degrees C, respectively.
引用
收藏
页码:9735 / 9745
页数:11
相关论文
共 31 条
[1]   Design and performance characteristics of solar adsorption refrigeration system using parabolic trough collector: Experimental and statistical optimization technique [J].
Abu-Hamdeh, Nidal H. ;
Alnefaie, Khaled A. ;
Almitani, Khalid H. .
ENERGY CONVERSION AND MANAGEMENT, 2013, 74 :162-170
[2]   Thermodynamic analysis and performance of an adsorption refrigeration system driven by solar collector [J].
Ammar, M. A. Hadj ;
Benhaoua, B. ;
Bouras, F. .
APPLIED THERMAL ENGINEERING, 2017, 112 :1289-1296
[3]   Adsorption cooling system employing granular activated carbon-R134a pair for renewable energy applications [J].
Askalany, Ahmed A. ;
Saha, Bidyut B. ;
Ahmed, Mahmoud S. ;
Ismail, Ibrahim M. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2013, 36 (03) :1037-1044
[4]  
Banker ND, 2004, CARBON, V42, P117, DOI [10.1016/j.carbon.2003.10.006, 10.1016/j.carbon.2003.09.006]
[5]   The hunt for nonflammable refrigerant blends to replace R-134a [J].
Bell, Ian H. ;
Domanski, Piotr A. ;
McLinden, Mark O. ;
Linteris, Gregory T. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 104 :484-495
[6]   Experimental investigation of a solar adsorption refrigeration system working with silicagel/water pair: A case study for Bou-Ismail solar data [J].
Bouzeffour, Fatih ;
Khelidj, Benyoucef ;
Abbes, Miloud Tahar .
SOLAR ENERGY, 2016, 131 :165-175
[7]   Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications [J].
Desideri, Umberto ;
Proietti, Stefania ;
Sdringola, Paolo .
APPLIED ENERGY, 2009, 86 (09) :1376-1386
[8]   Performance of solar adsorption refrigeration in system of SAPO-34 and ZSM-5 zeolite [J].
Du, S. W. ;
Li, X. H. ;
Yuan, Z. X. ;
Du, C. X. ;
Wang, W. C. ;
Liu, Z. B. .
SOLAR ENERGY, 2016, 138 :98-104
[9]   Modelling and performance study of a continuous adsorption refrigeration system driven by parabolic trough solar collector [J].
El Fadar, A. ;
Mimet, A. ;
Perez-Garcia, M. .
SOLAR ENERGY, 2009, 83 (06) :850-861
[10]   Experimental investigation on activated carbon-ethanol pair for solar powered adsorption cooling applications [J].
El-Sharkawy, I. I. ;
Saha, B. B. ;
Koyama, S. ;
He, J. ;
Ng, K. C. ;
Yap, C. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2008, 31 (08) :1407-1413