Prospecting major genes in dairy buffaloes

被引:75
作者
de Camargo, G. M. F. [1 ]
Aspilcueta-Borquis, R. R. [1 ]
Fortes, M. R. S. [2 ]
Porto-Neto, R. [3 ]
Cardoso, D. F. [1 ]
Santos, D. J. A. [1 ]
Lehnert, S. A. [3 ]
Reverter, A. [3 ]
Moore, S. S. [4 ]
Tonhati, H. [1 ]
机构
[1] Univ Estadual Paulista Unesp, Fac Ciencias Agr & Vet, Dept Zootecnia, BR-14884900 Jaboticabal, SP, Brazil
[2] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[3] CSIRO, Agr Flagship, Brisbane, Qld 4072, Australia
[4] Univ Queensland, Ctr Anim Sci, Queensland Alliance Agr & Food Innovat, Brisbane, Qld 4067, Australia
来源
BMC GENOMICS | 2015年 / 16卷
基金
巴西圣保罗研究基金会;
关键词
Bubalus bubalis; SNP; Reproduction; Milk; Candidate genes; GWAS; GENOME-WIDE ASSOCIATION; SOMATIC-CELL SCORE; MILK-PRODUCTION TRAITS; WATER-BUFFALO; FERTILITY TRAITS; BUBALUS-BUBALIS; RIVER BUFFALO; CATTLE; EXPRESSION; RECEPTOR;
D O I
10.1186/s12864-015-1986-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Asian buffaloes (Bubalus bubalis) have an important socio-economic role. The majority of the population is situated in developing countries. Due to the scarce resources in these countries, very few species-specific biotechnology tools exist and a lot of cattle-derived technologies are applied to buffaloes. However, the application of cattle genomic tools to buffaloes is not straightforward and, as results suggested, despite genome sequences similarity the genetic polymorphisms are different. Results: The first SNP chip genotyping platform designed specifically for buffaloes has recently become available. Herein, a genome-wide association study (GWAS) and gene network analysis carried out in buffaloes is presented. Target phenotypes were six milk production and four reproductive traits. GWAS identified SNP with significant associations and suggested candidate genes that were specific to each trait and also genes with pleiotropic effect, associated to multiple traits. Conclusions: Network predictions of interactions between these candidate genes may guide further molecular analyses in search of disruptive mutations, help select genes for functional experiments and evidence metabolism differences in comparison to cattle. The cattle SNP chip does not offer an optimal coverage of buffalo genome, thereafter the development of new buffalo-specific genetic technologies is warranted. An annotated reference genome would greatly facilitate genetic research, with potential impact to buffalo-based dairy production.
引用
收藏
页数:14
相关论文
共 83 条
[1]   Single nucleotide polymorphism and haplotype effects associated with somatic cell score in German Holstein cattle [J].
Abdel-Shafy, Hamdy ;
Bortfeldt, Ralf H. ;
Tetens, Jens ;
Brockmann, Gudrun A. .
GENETICS SELECTION EVOLUTION, 2014, 46
[2]   A Genome-Wide Search for Type 2 Diabetes Susceptibility Genes in an Extended Arab Family [J].
Al Safar, Habiba S. ;
Cordell, Heather J. ;
Jafer, Osman ;
Anderson, Denise ;
Jamieson, Sarra E. ;
Fakiola, Michaela ;
Khazanehdari, Kamal ;
Tay, Guan K. ;
Blackwell, Jenefer M. .
ANNALS OF HUMAN GENETICS, 2013, 77 :488-503
[3]   Fine mapping of quantitative trait loci underlying sensory meat quality traits in three French beef cattle breeds [J].
Allais, S. ;
Leveziel, H. ;
Hocquette, J. F. ;
Rousset, S. ;
Denoyelle, C. ;
Journaux, L. ;
Renand, G. .
JOURNAL OF ANIMAL SCIENCE, 2014, 92 (10) :4329-4341
[4]   A first generation whole genome RH map of the river buffalo with comparison to domestic cattle [J].
Amaral, M. Elisabete J. ;
Grant, Jason R. ;
Riggs, Penny K. ;
Stafuzza, Nedenia B. ;
Rodrigues Filho, Edson A. ;
Goldammer, Tom ;
Weikard, Rosemarie ;
Brunner, Ronald M. ;
Kochan, Kelli J. ;
Greco, Anthony J. ;
Jeong, Jooha ;
Cai, Zhipeng ;
Lin, Guohui ;
Prasad, Aparna ;
Kumar, Satish ;
Saradhi, G. Pardha ;
Mathew, Boby ;
Kumar, M. Aravind ;
Miziara, Melissa N. ;
Mariani, Paola ;
Caetano, Alexandre R. ;
Galvao, Stephan R. ;
Tantia, Madhu S. ;
Vijh, Ramesh K. ;
Mishra, Bina ;
Kumar, S. T. Bharani ;
Pelai, Vanderlei A. ;
Santana, Andre M. ;
Fornitano, Larissa C. ;
Jones, Brittany C. ;
Tonhati, Humberto ;
Moore, Stephen ;
Stothard, Paul ;
Womack, James E. .
BMC GENOMICS, 2008, 9 (1)
[5]   Polymorphisms in Oxytocin and α1a Adrenergic Receptor Genes and Their Effects on Production Traits in Dairy Buffaloes [J].
Araujo, Daniele Neves ;
Ferreira de Camargo, Gregorio Miguel ;
da Silva Fonseca, Patricia Dias ;
Cardoso, Diercles Francisco ;
Hurtado-Lugo, Naudin Alejandro ;
Aspilcueta-Borquis, Rusbel Raul ;
Tonhati, Humberto .
ANIMAL BIOTECHNOLOGY, 2015, 26 (03) :165-168
[6]   NAADP and the two-pore channel protein 1 participate in the acrosome reaction in mammalian spermatozoa [J].
Arndt, Lilli ;
Castonguay, Jan ;
Arlt, Elisabeth ;
Meyer, Dorke ;
Hassan, Sami ;
Borth, Heike ;
Zierler, Susanna ;
Wennemuth, Gunther ;
Breit, Andreas ;
Biel, Martin ;
Wahl-Schott, Christian ;
Gudermann, Thomas ;
Klugbauer, Norbert ;
Boekhoff, Ingrid .
MOLECULAR BIOLOGY OF THE CELL, 2014, 25 (06) :948-964
[7]   Prolactin Promotes Mammary Pathogenesis Independently from Cyclin D1 [J].
Asher, Jennifer M. ;
O'Leary, Kathleen A. ;
Rugowski, Debra E. ;
Arendt, Lisa M. ;
Schuler, Linda A. .
AMERICAN JOURNAL OF PATHOLOGY, 2012, 181 (01) :294-302
[8]   Genetic parameter estimates for buffalo milk yield, milk quality and mozzarella production and Bayesian inference analysis of their relationships [J].
Aspilcueta-Borquis, R. R. ;
Di Palo, R. ;
Araujo Neto, F. R. ;
Baldi, F. ;
de Camargo, G. M. F. ;
de Albuquerque, L. G. ;
Zicarelli, L. ;
Tonhati, H. .
GENETICS AND MOLECULAR RESEARCH, 2010, 9 (03) :1636-1644
[9]   GenABEL: an R library for genome-wide association analysis [J].
Aulchenko, Yurii S. ;
Ripke, Stephan ;
Isaacs, Aaron ;
Van Duijn, Cornelia M. .
BIOINFORMATICS, 2007, 23 (10) :1294-1296
[10]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)