Constraining the uncertainty in emissions over India with a regional air quality model evaluation

被引:26
作者
Karambelas, Alexandra [1 ]
Holloway, Tracey [1 ,2 ]
Kiesewetter, Gregor [3 ]
Heyes, Chris [3 ]
机构
[1] Univ Wisconsin, Nelson Inst Ctr Sustainabil & Global Environm, 1710 Univ Ave, Madison, WI USA
[2] Univ Wisconsin, Dept Atmospher & Ocean Sci, 1225 West Dayton St, Madison, WI USA
[3] Int Inst Appl Syst Anal, Air Pollut & Greenhouse Gases, Schlosspl 1, A-2361 Laxenburg, Austria
基金
美国国家科学基金会;
关键词
India; Model; Satellite; OMI; NO2; Emissions; VOLATILE ORGANIC-COMPOUNDS; THERMAL POWER-PLANTS; NOX EMISSIONS; PERFORMANCE EVALUATION; HUMAN HEALTH; EAST-ASIA; OZONE; INVENTORY; TRANSPORT; POLLUTION;
D O I
10.1016/j.atmosenv.2017.11.052
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To evaluate uncertainty in the spatial distribution of air emissions over India, we compare satellite and surface observations with simulations from the U.S. Environmental Protection Agency (EPA) Community Multi-Scale Air Quality (CMAQ) model. Seasonally representative simulations were completed for January, April, July, and October 2010 at 36 km x 36 km using anthropogenic emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSE v5a). We use both tropospheric columns from the Ozone Monitoring Instrument (OMI) and surface observations from the Central Pollution Control Board (CPCB) to closely examine modeled nitrogen dioxide (NO2) biases in urban and rural regions across India. Spatial average evaluation with satellite retrievals indicate a low bias in the modeled tropospheric column (63.3%), which reflects broad low-biases in majority non-urban regions (-70.1% in rural areas) across the sub-continent to slightly lesser low biases reflected in semi-urban areas (-44.7%), with the threshold between semi-urban and rural defined as 400 people per km(2). In contrast, modeled surface NO2 concentrations exhibit a slight high bias of +15.6% when compared to surface CPCB observations predominantly located in urban areas. Conversely, in examining extremely population dense urban regions with more than 5000 people per km(2) (dense-urban), we find model overestimates in both the column (+ 57.8) and at the surface (+131.2%) compared to observations. Based on these results, we find that existing emission fields for India may overestimate urban emissions in densely populated regions and underestimate rural emissions. However, if we rely on model evaluation with predominantly urban surface observations from the CPCB, comparisons reflect model high biases, contradictory to the knowledge gained using satellite observations. Satellites thus serve as an important emissions and model evaluation metric where surface observations are lacking, such as rural India, and support improved emissions inventory development.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 67 条
[1]   Impact of air pollutants from surface transport sources on human health: A modeling and epidemiological approach [J].
Aggarwal, Preeti ;
Jain, Suresh .
ENVIRONMENT INTERNATIONAL, 2015, 83 :146-157
[2]   Emission factors for open and domestic biomass burning for use in atmospheric models [J].
Akagi, S. K. ;
Yokelson, R. J. ;
Wiedinmyer, C. ;
Alvarado, M. J. ;
Reid, J. S. ;
Karl, T. ;
Crounse, J. D. ;
Wennberg, P. O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (09) :4039-4072
[3]   Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model [J].
Allen, D. J. ;
Pickering, K. E. ;
Pinder, R. W. ;
Henderson, B. H. ;
Appel, K. W. ;
Prados, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (04) :1737-1758
[4]   Managing future air quality in megacities: A case study for Delhi [J].
Amann, Markus ;
Purohit, Pallav ;
Bhanarkar, Anil D. ;
Bertok, Imrich ;
Borken-Kleefeld, Jens ;
Cofala, Janusz ;
Heyes, Chris ;
Kiesewetter, Gregor ;
Klimont, Zbigniew ;
Liu, Jun ;
Majumdar, Dipanjali ;
Binh Nguyen ;
Rafaj, Peter ;
Rao, Padma S. ;
Sander, Robert ;
Schoepp, Wolfgang ;
Srivastava, Anjali ;
Vardhan, B. Harsh .
ATMOSPHERIC ENVIRONMENT, 2017, 161 :99-111
[5]   Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications [J].
Amann, Markus ;
Bertok, Imrich ;
Borken-Kleefeld, Jens ;
Cofala, Janusz ;
Heyes, Chris ;
Hoeglund-Isaksson, Lena ;
Klimont, Zbigniew ;
Nguyen, Binh ;
Posch, Maximilian ;
Rafaj, Peter ;
Sandler, Robert ;
Schoepp, Wolfgang ;
Wagner, Fabian ;
Winiwarter, Wilfried .
ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (12) :1489-1501
[6]  
[Anonymous], 2012, Ozone Monitoring Instrument (OMI) Data User's Guide
[7]   Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India [J].
Apte, Joshua S. ;
Kirchstetter, Thomas W. ;
Reich, Alexander H. ;
Deshpande, Shyam J. ;
Kaushik, Geetanjali ;
Chel, Arvind ;
Marshall, Julian D. ;
Nazaroff, William W. .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (26) :4470-4480
[8]   An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument [J].
Boersma, K. F. ;
Eskes, H. J. ;
Dirksen, R. J. ;
van der A, R. J. ;
Veefkind, J. P. ;
Stammes, P. ;
Huijnen, V. ;
Kleipool, Q. L. ;
Sneep, M. ;
Claas, J. ;
Leitao, J. ;
Richter, A. ;
Zhou, Y. ;
Brunner, D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (09) :1905-1928
[9]   Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system [J].
Byun, Daewon ;
Schere, Kenneth L. .
APPLIED MECHANICS REVIEWS, 2006, 59 (1-6) :51-77
[10]   Ozone and NOx chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI) data [J].
Canty, T. P. ;
Hembeck, L. ;
Vinciguerra, T. P. ;
Anderson, D. C. ;
Goldberg, D. L. ;
Carpenter, S. F. ;
Allen, D. J. ;
Loughner, C. P. ;
Salawitch, R. J. ;
Dickerson, R. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (19) :10965-10982