Lie derivations of incidence algebras

被引:23
作者
Zhang, Xian [1 ]
Khrypchenko, Mykola [2 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
[2] Univ Fed Santa Catarina, Dept Matemat, Campus Reitor Joao David Ferreira Lima, BR-88040900 Florianopolis, SC, Brazil
关键词
Derivation; Lie derivation; Incidence algebra; FINITARY INCIDENCE RINGS; TRIANGULAR ALGEBRAS; JORDAN DERIVATIONS; AUTOMORPHISMS; INVOLUTIONS;
D O I
10.1016/j.laa.2016.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a locally finite preordered set, R a commutative ring with identity and I(X, R) the incidence algebra of X over R. In this note we prove that each Lie derivation of I(X, R.) is proper, provided that R is 2-torsion free. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 83
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1997, Enumerative combinatorics
[2]   Lie derivations on triangular matrices [J].
Benkovic, Dominik .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06) :619-626
[3]   Generalized Lie derivations on triangular algebras [J].
Benkovic, Dominik .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (06) :1532-1544
[4]   Commuting maps: A survey [J].
Bresar, M .
TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03) :361-397
[6]   Classification of involutions on finitary incidence algebras [J].
Brusamarello, Rosali ;
Fornaroli, Erica Zancanella ;
Santulo Junior, Ednei Aparecido .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (08) :1085-1098
[7]   Automorphisms and involutions on incidence algebras [J].
Brusamarello, Rosali ;
Lewis, David W. .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (11) :1247-1267
[8]   Lie derivations of triangular algebras [J].
Cheung, WS .
LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (03) :299-310
[9]   Lie derivations of generalized matrix algebras [J].
Du, Yiqiu ;
Wang, Yu .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (11) :2719-2726
[10]   LIE AND JORDAN STRUCTURES IN SIMPLE, ASSOCIATIVE RINGS [J].
HERSTEIN, IN .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (06) :517-&