INTEGRATING KLEIN-GORDON-FOCK EQUATIONS IN AN EXTERNAL ELECTROMAGNETIC FIELD ON LIE GROUPS

被引:22
作者
Magazev, A. A. [1 ]
机构
[1] Omsk State Tech Univ, Omsk, Russia
关键词
Klein-Gordon-Fock equation; symmetry operator; Lie group; Lie algebra; lambda-representation; WAVE-EQUATIONS;
D O I
10.1007/s11232-012-0139-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the structure of the Klein-Gordon-Fock equation symmetry algebra on pseudo-Riemannian manifolds with motions in the presence of an external electromagnetic field. We show that in the case of an invariant electromagnetic field tensor, this algebra is a one-dimensional central extension of the Lie algebra of the group of motions. Based on the coadjoint orbit method and harmonic analysis on Lie groups, we propose a method for integrating the Klein-Gordon-Fock equation in an external field on manifolds with simply transitive group actions. We consider a nontrivial example on the four-dimensional group E(2)xa"e in detail.
引用
收藏
页码:1654 / 1667
页数:14
相关论文
共 22 条
  • [1] [Anonymous], 1978, Lecture Notes in Pure and Applied Mathematics
  • [2] [Anonymous], 1976, GRUNDLEHREN MATH WIS
  • [3] [Anonymous], 1980, QUANTUM EFFECTS STRO
  • [4] Bagrov V. G., 1990, MATH ITS APPL SOV SE, V39
  • [5] New solutions of relativistic wave equations in magnetic fields and longitudinal fields
    Bagrov, VG
    Baldiotti, MC
    Gitman, DM
    Shirokov, IV
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2284 - 2305
  • [6] BAGROV VG, 2001, ARXIVHEPTH0110037V3
  • [7] Four-dimensional Lie group integration of the Klein-Fock equation
    Baranovskii S.P.
    Mikheev V.V.
    Shirokov I.V.
    [J]. Russian Physics Journal, 2002, 45 (11) : 1033 - 1041
  • [8] BIRRELL ND, 1982, CAMBRIDGE MONOGR MAT, V7
  • [9] VACUUM POLARIZATION OF A SCALAR FIELD ON LIE GROUPS AND HOMOGENEOUS SPACES
    Breev, A. I.
    Shirokov, I. V.
    Magazev, A. A.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 167 (01) : 468 - 483
  • [10] Dixmier J., 1977, GRAD STUD MATH, V11