RLScore: Regularized Least-Squares Learners

被引:0
作者
Pahikkala, Tapio [1 ]
Airola, Antti [1 ]
机构
[1] 20014 Univ Turku, Dept Informat Technol, Turku, Finland
基金
芬兰科学院;
关键词
cross-validation; feature selection; kernel methods; Kronecker product kernel; pair-input learning; !text type='python']python[!/text; regularized least-squares;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RLScore is a Python open source module for kernel based machine learning. The library provides implementations of several regularized least-squares (RLS) type of learners. RLS methods for regression and classification, ranking, greedy feature selection, multi-task and zero-shot learning, and unsupervised classification are included. Matrix algebra based computational short-cuts are used to ensure efficiency of both training and cross-validation. A simple API and extensive tutorials allow for easy use of RLScore.
引用
收藏
页数:5
相关论文
共 14 条
[1]   An experimental comparison of cross-validation techniques for estimating the area under the ROC curve [J].
Airola, Antti ;
Pahikkala, Tapio ;
Waegeman, Willem ;
De Baets, Bernard ;
Salakoski, Tapio .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (04) :1828-1844
[2]   Cython: The Best of Both Worlds [J].
Behnel, Stefan ;
Bradshaw, Robert ;
Citro, Craig ;
Dalcin, Lisandro ;
Seljebotn, Dag Sverre ;
Smith, Kurt .
COMPUTING IN SCIENCE & ENGINEERING, 2011, 13 (02) :31-39
[3]  
Jones E., 2001, SciPy: Open source scientific tools for Python
[4]   Multi-label learning under feature extraction budgets [J].
Naula, Pekka ;
Airola, Antti ;
Salakoski, Tapio ;
Pahikkala, Tapio .
PATTERN RECOGNITION LETTERS, 2014, 40 :56-65
[5]   Toward more realistic drug-target interaction predictions [J].
Pahikkala, Tapio ;
Airola, Antti ;
Pietila, Sami ;
Shakyawar, Sushil ;
Szwajda, Agnieszka ;
Tang, Jing ;
Aittokallio, Tero .
BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) :325-337
[6]   Efficient regularized least-squares algorithms for conditional ranking on relational data [J].
Pahikkala, Tapio ;
Airola, Antti ;
Stock, Michiel ;
De Baets, Bernard ;
Waegeman, Willem .
MACHINE LEARNING, 2013, 93 (2-3) :321-356
[7]   Unsupervised Multi-Class Regularized Least-Squares Classification [J].
Pahikkala, Tapio ;
Airola, Antti ;
Gieseke, Fabian ;
Kramer, Oliver .
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, :585-594
[8]   Efficient cross-validation for kernelized least-squares regression with sparse basis expansions [J].
Pahikkala, Tapio ;
Suominen, Hanna ;
Boberg, Jorma .
MACHINE LEARNING, 2012, 87 (03) :381-407
[9]   An efficient algorithm for learning to rank from preference graphs [J].
Pahikkala, Tapio ;
Tsivtsivadze, Evgeni ;
Airola, Antti ;
Jarvinen, Jouni ;
Boberg, Jorma .
MACHINE LEARNING, 2009, 75 (01) :129-165
[10]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825