ASYMPTOTICS OF RADIATION FIELDS IN ASYMPTOTICALLY MINKOWSKI SPACE

被引:37
作者
Baskin, Dean [1 ]
Vasy, Andras [2 ]
Wunsch, Jared [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SCATTERING-THEORY; WAVE-EQUATION; SYMBOLIC POTENTIALS; ORDER ZERO; PROPAGATION; MANIFOLDS; SINGULARITIES; RESOLVENT;
D O I
10.1353/ajm.2015.0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a non-trapping n-dimensional Lorentzian manifold endowed with an end structure modeled on the radial compactification of Minkowski space. We find a full asymptotic expansion for tempered forward solutions of the wave equation in all asymptotic regimes. The rates of decay seen in the asymptotic expansion are related to the resonances of a natural asymptotically hyperbolic problem on the "northern cap" of the compactification. For small perturbations of Minkowski space that fit into our framework, our asymptotic expansions yield a rate of decay that improves on the Klainerman-Sobolev estimates.
引用
收藏
页码:1293 / 1364
页数:72
相关论文
共 26 条
[11]  
Hormander L., 1985, Grund. math. Wissen., V274
[13]   MEROMORPHIC EXTENSION OF THE RESOLVENT ON COMPLETE SPACES WITH ASYMPTOTICALLY CONSTANT NEGATIVE CURVATURE [J].
MAZZEO, RR ;
MELROSE, RB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 75 (02) :260-310
[14]  
Melrose R.B., 1993, Research Notes in Mathematics, V4
[15]  
MELROSE RB, 1994, LECT NOTES PURE APPL, V161, P85
[16]   Propagation of singularities for the wave equation on edge manifolds [J].
Melrose, Richard ;
Vasy, Andras ;
Wunsch, Jared .
DUKE MATHEMATICAL JOURNAL, 2008, 144 (01) :109-193
[17]   SOLVING OF PARTIAL DIFFERENTIAL EQUATIONS [J].
UNTERBERGER, A .
ANNALES DE L INSTITUT FOURIER, 1971, 21 (02) :85-+
[18]  
Vasy A, 1998, INT MATH RES NOTICES, V1998, P285
[19]  
Vasy A., 2013, Math. Sci. Res. Inst. Publ., V60, P487
[20]   Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov) [J].
Vasy, Andras .
INVENTIONES MATHEMATICAE, 2013, 194 (02) :381-513