ASYMPTOTICS OF RADIATION FIELDS IN ASYMPTOTICALLY MINKOWSKI SPACE

被引:37
作者
Baskin, Dean [1 ]
Vasy, Andras [2 ]
Wunsch, Jared [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SCATTERING-THEORY; WAVE-EQUATION; SYMBOLIC POTENTIALS; ORDER ZERO; PROPAGATION; MANIFOLDS; SINGULARITIES; RESOLVENT;
D O I
10.1353/ajm.2015.0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a non-trapping n-dimensional Lorentzian manifold endowed with an end structure modeled on the radial compactification of Minkowski space. We find a full asymptotic expansion for tempered forward solutions of the wave equation in all asymptotic regimes. The rates of decay seen in the asymptotic expansion are related to the resonances of a natural asymptotically hyperbolic problem on the "northern cap" of the compactification. For small perturbations of Minkowski space that fit into our framework, our asymptotic expansions yield a rate of decay that improves on the Klainerman-Sobolev estimates.
引用
收藏
页码:1293 / 1364
页数:72
相关论文
共 26 条
[1]  
Alinhac S, 2009, UNIVERSITEXT, pIX
[2]   CARLEMAN ESTIMATES FOR PSEUDODIFFERENTIAL OPERATORS [J].
DUISTERMAAT, JJ .
INVENTIONES MATHEMATICAE, 1972, 17 (01) :31-+
[3]   Upper Bound on the Density of Ruelle Resonances for Anosov Flows [J].
Faure, Frederic ;
Sjoestrand, Johannes .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (02) :325-364
[4]   RADIATION-FIELDS AND HYPERBOLIC SCATTERING-THEORY [J].
FRIEDLANDER, FG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 88 (NOV) :483-515
[5]   Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds [J].
Guillarmou, C .
DUKE MATHEMATICAL JOURNAL, 2005, 129 (01) :1-37
[6]  
Haber N., PREPRINT
[7]   Spectral and scattering theory for symbolic potentials of order zero [J].
Hassell, A ;
Melrose, R ;
Vasy, A .
ADVANCES IN MATHEMATICS, 2004, 181 (01) :1-87
[8]   MICROLOCAL PROPAGATION NEAR RADIAL POINTS AND SCATTERING FOR SYMBOLIC POTENTIALS OF ORDER ZERO [J].
Hassell, Andrew ;
Melrose, Richard ;
Vasy, Andras .
ANALYSIS & PDE, 2008, 1 (02) :127-196
[9]  
HO L., 1990, RMANDER, The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, V2nd
[10]  
Hormander L., 1971, ENSEIGNEMENT MATH, V17, P99