ASYMPTOTICS OF RADIATION FIELDS IN ASYMPTOTICALLY MINKOWSKI SPACE

被引:32
作者
Baskin, Dean [1 ]
Vasy, Andras [2 ]
Wunsch, Jared [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SCATTERING-THEORY; WAVE-EQUATION; SYMBOLIC POTENTIALS; ORDER ZERO; PROPAGATION; MANIFOLDS; SINGULARITIES; RESOLVENT;
D O I
10.1353/ajm.2015.0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a non-trapping n-dimensional Lorentzian manifold endowed with an end structure modeled on the radial compactification of Minkowski space. We find a full asymptotic expansion for tempered forward solutions of the wave equation in all asymptotic regimes. The rates of decay seen in the asymptotic expansion are related to the resonances of a natural asymptotically hyperbolic problem on the "northern cap" of the compactification. For small perturbations of Minkowski space that fit into our framework, our asymptotic expansions yield a rate of decay that improves on the Klainerman-Sobolev estimates.
引用
收藏
页码:1293 / 1364
页数:72
相关论文
共 26 条